
OpenCL on FPGAs

Contains material from Hands On OpenCL by Simon McIntosh-Smith, Tom Deakin, James Price, 
Tim Mattson and Benedict Gaster under the "attribution CC BY" creative commons license.

https://handsonopencl.github.io/


What are FPGAs?

• Reprogrammable hardware

• Integrate huge numbers of lookup tables 
(LUTs), registers, on-chip memories, and 
arithmetic hardware (e.g. DSP blocks)

• These on-chip resources are connected 
through a reconfigurable network

• Traditionally programmed through a very low-
level hardware description language
– VHDL or Verilog

2



Why FPGAs?

• Prototyping hardware designs
– Application-Specific Integrated Circuit (ASIC): 

customized circuit for a specialized application e.g. 
aerospace microcontroller, Bitcoin miner

– Application-Specific Standard Product (ASSP): 
customized for application market e.g. automotive 
microcontrollers, smart phone chips

• Production systems
– Reconfigurable = can modify electronics in situ
– As cheap and power efficient as ASICs

(except for very large volumes)

3



OpenCL on FPGAs

• FPGA architectures are very different from GPUs and 
CPUs

• Requires a completely different approach to achieve 
good performance

• On CPUs/GPUs, you want lots of parallelism: i.e. lots of 
work-items and work-groups

• For FPGAs, you want just a few work-items, each 
representing a long pipeline

• Base-level for programming FPGAs is hardware 
definition language (HDL): Verilog or VHDL
– Detailed; low-level; highly-specialized

• OpenCL makes programming FPGAs more accessible

4



FPGA Architecture

Source: http://www.fpga-site.com/faq.html 5

http://www.fpga-site.com/faq.html


FPGA Hard Blocks

6
Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

Most FPGA packages 
include blocks of 
predefined hardware (hard 
blocks) to implement 
commonly required 
functions
• Digital signal processor 

(DSP)
• Arithmetic units
• I/O logic
• Memory blocks

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html


Compiling OpenCL into Hardware
size_t index = get_global_id(0);

C[index] = (A[index] >> 5) + B[index];

F[index] = (D[index] – E[index]) << 3;

G[index] = C[index] + F[index]; 

The Intel FPGA SDK for OpenCL 
Offline Compiler provides a 
custom pipeline structure that 
speeds up computation by 
allowing operations within a 
large number of work-items to 
occur concurrently. The offline 
compiler can create a custom 
pipeline that calculates the 
values for variables C, F and G 
every clock cycle, as shown 
below. After a ramp-up phase, 
the pipeline sustains a 
throughput of one work-item 
per cycle. 

7Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html


OpenCL Design Components

8

An OpenCL system design provides kernels with access to local and global memory
(just like in a regular OpenCL program)

Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html


FPGA Optimisation Tips

• Create single work-item kernels if: 

– You cannot break down an algorithm into separate 
work-items easily because of data dependencies 
that arise when multiple work-items are in flight. 

– You organize your OpenCL application in multiple 
kernels, you use channels to transfer data among 
the kernels, and the data processing sequence is 
critical to your application. 

– Equivalent to an NDRange size of (1, 1, 1) 

9



Single Work-Item Kernels

• In this approach, the FPGA OpenCL compiler 
will attempt to pipeline the work-item

• Special care needed to ensure the compiler 
can pipeline loops

10



More Tips for FPGA Optimisation

• Optimize each kernel to target a single compute unit first 
• Then scale the number of compute units up until you've 

filled the FPGA
– Compiling with fewer compute units takes much less FPGA 

compilation time

• Consider moving data between kernels using OpenCL pipes 
or vendor extensions such as channels

• Unrolling loops can help FPGA OCL compilers
– e.g. #pragma unroll 8

• Optimise floating point operations
• Avoid expensive operations
• Allocate memory aligned to at least 64 bytes
• Use restrict to avoid pointer aliasing
• Avoid work-item ID-dependent backward branching

11



Using Pipes and Channels

12

Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html


Optimising Floating Point

• Giving the FPGA OpenCL compiler more freedom 
regarding IEEE compliance can make a huge 
difference in performance

• Key compiler flags include:
– --fp-relaxed : compiler can change order of operations

– --fpc : minimise type conversions and combine 
multiple rounding operations into one. Results in use 
of fused multiple-accumulate (FMAC) instructions

• Fixed point even better than floating point on 
FPGAs, can pack in more execution units
– OpenCL supports 8, 16, 32 and 64-bit fixed point

13



Operation costs on FPGAs

• Expensive operations include:
– Integer division and modulo (remainder) operators 
– Most floating-point operators except addition, 

multiplication, absolute value, and comparison 
– Atomic functions 

• In contrast, cheap operations include:
– Binary logic operations such as AND, NAND, OR, NOR, 

XOR, and XNOR 
– Logical operations with one constant argument 
– Shift by constant 
– Integer multiplication and division by a constant that 

is a power of two 

14Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html


Other FPGA Kernel Tips

• Use well-formed loops

– These have an exit condition that compares against an 
integer bound, and have a simple induction increment 
of one per iteration 

• Avoid pointer arithmetic, use simple array 
indexing instead

• Avoid complex loop exit conditions 

• Convert nested loops into a single loop 

• Declare variables in the deepest scope possible 

15



OpenCL on FPGA Summary

• You'll probably need completely different 
kernels for optimal performance on an FPGA

• Still uses the same overall OpenCL host 
infrastructure though

• In theory, OpenCL supports using CPUs, GPUs, 
DSPs and FPGAs all at the same time…

16



Useful Resources

Intel (formerly Altera):
• https://www.intel.com/content/www/us/en/programma

ble/support/support-resources.html

• https://www.intel.com/content/dam/www/programmab
le/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-
practices-guide.pdf

Xilinx:
• http://www.xilinx.com/products/design-tools/software-

zone/sdaccel.html#documentation

17

https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#documentation

