OpenCL on FPGAs

Contains material from Hands On OpenCL by Simon Mclntosh-Smith, Tom Deakin, James Price,
Tim Mattson and Benedict Gaster under the "attribution CC BY" creative commons license.

https://handsonopencl.github.io/

What are FPGAs?

Reprogrammable hardware

Integrate huge numbers of lookup tables
(LUTs), registers, on-chip memories, and
arithmetic hardware (e.g. DSP blocks)

These on-chip resources are connected
through a reconfigurable network

Traditionally programmed through a very low-
level hardware description language

— VHDL or Verilog

Why FPGAs?

* Prototyping hardware designs

— Application-Specific Integrated Circuit (ASIC):
customized circuit for a specialized application e.g.
aerospace microcontroller, Bitcoin miner

— Application-Specific Standard Product (ASSP):
customized for application market e.g. automotive
microcontrollers, smart phone chips

* Production systems
— Reconfigurable = can modify electronics in situ

— As cheap and power efficient as ASICs
(except for very large volumes)

OpenCL on FPGAs

FPGA architectures are very different from GPUs and
CPUs

Requires a completely different approach to achieve
good performance

On CPUs/GPUs, you want lots of parallelism: i.e. lots of
work-items and work-groups

For FPGAs, you want just a few work-items, each
representing a long pipeline

Base-level for programming FPGAs is hardware
definition language (HDL): Verilog or VHDL

— Detailed; low-level; highly-specialized
OpenCL makes programming FPGAs more accessible

FPGA Architecture

[Inputﬁjutput Blocks]

L Logic Blocks }

¥

Programmable
Interconnect

Source: http://www.fpga-site.com/fag.html

http://www.fpga-site.com/faq.html

FPGA Hard Blocks

DSP Block
Memory Block

Most FPGA packages
include blocks of [ovma on L
predefined hardware (hard = T
blocks) to implement o o eial B
commonly required ‘= ‘\=E o
functions g\iilj‘
« Digital signal processor o

(DSP) a
* Arithmetic units \g\
* 1/0 logic L

* Memory blocks

Logic

Programmable ‘ e e A
= — Modules

Routing Switch ooy 0T’

Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html

Compiling OpenCL into Hardware

size t index = get global id(0);

C[index] = (A[index] >> 5) + B[index];
F[index] = (D[index]
G[index] = C[index] + F[index];

— E[index]) << 3;

D E A B
Subtraction Shift Right by 5
Shift Left by 3 Addition -

lF

The Intel FPGA SDK for OpenCL
Offline Compiler provides a
custom pipeline structure that
speeds up computation by
allowing operations within a
large number of work-items to
occur concurrently. The offline
compiler can create a custom
pipeline that calculates the
values for variables C, F and G
every clock cycle, as shown
below. After a ramp-up phase,
the pipeline sustains a
throughput of one work-item
per cycle.

Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html

OpenCL Desigh Components

An OpenCL system design provides kernels with access to local and global memory
(just like in a regular OpenCL program)

FPGA

External Memory External Memory W

Controller and PHY Controller and PH‘I’J{*

d4ad

¢1r

f $
\J v
/ Global Memory Interconnect \

On-Chip

On-Chip Memory

Memory

\ Local Memory Interconnect Local Memory Intermnmctj

Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

— 1111

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html

FPGA Optimisation Tips

* Create single work-item kernels if:

— You cannot break down an algorithm into separate
work-items easily because of data dependencies
that arise when multiple work-items are in flight.

— You organize your OpenCL application in multiple
kernels, you use channels to transfer data among
the kernels, and the data processing sequence is
critical to your application.

— Equivalent to an NDRange size of (1, 1, 1)

Single Work-ltem Kernels

* |n this approach, the FPGA OpenCL compiler
will attempt to pipeline the work-item

e Special care needed to ensure the compiler
can pipeline loops

More Tips for FPGA Optimisation

Optimize each kernel to target a single compute unit first

Then scale the number of compute units up until you've
filled the FPGA

— Compiling with fewer compute units takes much less FPGA
compilation time

Consider moving data between kernels using OpenCL pipes
or vendor extensions such as channels

Unrolling loops can help FPGA OCL compilers
— e.g. #pragma unroll 8
Optimise floating point operations
Avoid expensive operations
Allocate memory aligned to at least 64 bytes
Use restrict to avoid pointer aliasing
Avoid work-item ID-dependent backward branching

Using Pipes and Channels

Global Memory Access Pattern Before AOCL Channels or Pipes Implementation

Global Memory

%,,y 42%
&

Kernel 1

Kernel 2

Kernel 3

Global Memory Access Pattern After AOCL Channels or Pipes Implementation

Kernel 4

Global Memory

%,

Kernel 1

Channel/Pipe>>| Kernel 2

Channel/Pipe >

Kernel 3

Channel/Pipe

Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

&

Kernel 4

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html

Optimising Floating Point

* Giving the FPGA OpenCL compiler more freedom
regarding IEEE compliance can make a huge
difference in performance

* Key compiler flags include:

— --fp-relaxed : compiler can change order of operations

— --fpc : minimise type conversions and combine
multiple rounding operations into one. Results in use
of fused multiple-accumulate (FMAC) instructions

* Fixed point even better than floating point on
FPGAs, can pack in more execution units

— OpenCL supports 8, 16, 32 and 64-bit fixed point

Operation costs on FPGAs

* Expensive operations include:
— Integer division and modulo (remainder) operators

— Most floating-point operators except addition,
multiplication, absolute value, and comparison

— Atomic functions

* In contrast, cheap operations include:

— Binary logic operations such as AND, NAND, OR, NOR,
XOR, and XNOR

— Logical operations with one constant argument
— Shift by constant

— Integer multiplication and division by a constant that
is a power of two

Source: Intel FPGA for OpenCL SDK Pro Edition: Best Practices Guide

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1391807516407.html

Other FPGA Kernel Tips

Use well-formed loops

— These have an exit condition that compares against an
integer bound, and have a simple induction increment
of one per iteration

Avoid pointer arithmetic, use simple array
indexing instead

Avoid complex loop exit conditions
Convert nested loops into a single loop
Declare variables in the deepest scope possible

OpenCL on FPGA Summary

* You'll probably need completely different
kernels for optimal performance on an FPGA

 Still uses the same overall OpenCL host
infrastructure though

* |n theory, OpenCL supports using CPUs, GPUs,
DSPs and FPGAs all at the same time...

Useful Resources

Intel (formerly Altera):
* https://www.intel.com/content/www/us/en/programma
ble/support/support-resources.html

* https://www.intel.com/content/dam/www/programmab
le/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-
practices-guide.pdf

Xilinx:
 http://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html#documentation

17

https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html#documentation

