
Using GPUs to Accelerated
Computational Performance

Dr Eric McCreath

Research School of Computer Science

The Australian National University

2

Overview
GPU Architecture

SIMT

Kernels

Memory

Intermediate representations and runtimes

"Hello World" - OpenCL

"Hello World" - Cuda

Lab Activity

3

Progress?
What has changed in the last 20 years in computing?

Me - ~1998 Me - more recently

4

GEForce

5

Super Computer Performance

Rapid growth of supercomputer performance, based on data from top500.org site. The
logarithmic y-axis shows performance in GFLOPS.

By AI.Graphic - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=33540287

6

GPU vs CPU
Just looking at the specs of a basic desktop computer we can

see great potential in GPU computing.

GeForce GTX 1080

RAM
8GB DDR5

320 GB/s
256bits wide

RAM

PCIE

Intel Core i7-6700K
4 CPU cores

16GB DDR4

34 GB/s

15 GB/s

114 GFlops 8228 GFlops

8 threads
2560 cuda cores

7

Inside a CPU
The Core i7-6700K quad-core processor

From https://www.techpowerup.com/215333/intel-skylake-die-layout-detailed

8

Inside the GPU
If we take a closer look inside a GPU we see some similarity with
the CPU, although more repetition that comes with the many more
cores.

GTX1070 - GP104 - Pascal

From https://www.flickr.com/photos/130561288@N04/36230799276 By Fritzchens Fritz Public Domain

9

Key Parts Within a GPU
Nvidia GPUs chips are partitioned into Graphics Processor

Clusters (GPCs). So on the GP104 there is 4 GPCs.

Each GPC is again partitioned into Streaming Multiprocessors
(SMs). On the GP104 there is 5 SMPs per GPC.

Each SM has "CUDA" cores which are basically ALU units which
can execute SIMD instructions. On the GP104 there is 128 CUDA
cores per SMs.

On the GP104 each SMP has 24KiB of Unified L1 cache/texture
cache and 96K of "shared memory".

The GP104 chip has 2048KiB of L2 cache.

I think we need a diagram!!

10

Key Parts Within A GPU

8G DRAM

L2

2MB

GPC GPC

GPCGPC

SM SM

SMSM

SM

SM SM

SMSMSM

SM

SMSMSM

SM

SM SM

SMSM

SM

24KiB L1

128 CUDA CORES

96KiB Shared

64K of 32bit
registers

11

AMD
If we had a look at an AMD GPU we would see something similar.
So the Radeon R9 290 series block diagram is:

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Compute Unit

Each compute unit has:
 64 stream processors
 4*64KB vector registers
 64KB local shared data
 16KB L1 Cache
 texture and scheduler
 components

L2 Cache (1MB)

Memory Controler

Shader Engine Shader Engine Shader Engine Shader Engine

Global Data Share

Asynchronous Compute Engines

12

Some Terminology
CUDA (Compute Unified Device Architecture) is Nvidia's

programming model and parallel programming platform developed
by Nvidia for there GPU devices. It comes with its own
terminology.

The stream multiprocessor (SM) is a key computational grouping
within a GPU, although "stream multiprocessor" is Nvidia's
terminology. AMD would call them "compute units".

Also "CUDA cores" would be called "shader units" or "stream
processors" by AMD.

13

Kernels
Kernels are the small pieces of code that execute in a thread (or
work-item) on the GPU. They are written in c . For a single kernel
one would normally launch many threads. Each thread is given the
task of working on a different data item (data parallelisim).

In CUDA kernels have the "__global__" compiler directive before
them, they don't return anything (type void), parameters can be
basic types, structs, or pointers. Below is a simple kernel that adds
one to each element of an array.
__global__ void addone(int n, int *data) {
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx < n) data[idx] = data[idx] + 1;
}

To launch this kernel with 10 blocks with 256 thread per block you
would:
addone<<<10,256>>>(n, data); // "n" is the number of items in the array "data"

14

SIMT
Single Instruction Multiple Data (SIMD), describle by Flynn in 1966,
and typically has single instructions operate on a vectors of data
items. This saves on duplicating the instruction execution
hardware and the memory has good spatial locality. GPUs have
an extension on this called Single Instruction Multiple Thread
(SIMT), this provides more context for each of these 'threads'.

Instructions PC

Data

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

SIMD Instructions PC

Data

Processing
Unit

Processing
Unit

Processing
Unit

Processing
Unit

SIMT

Register

Register

Register

Register

Thread have their own registers, can access different
addresses, and can follow divergent paths in the code.

15

Memory
Memory bandwidth and latency can often significantly impact
performance so one of the first performance considerations or
questions when porting a program to the GPU is: Which memory
to use and how to best use this memory. Memory is described by
its scope from the threads perspective. The key memory types to
consider are:

registers - fast and local to threads.

shared memory - fast memory that is shared within the block
(local memory in OpenCL).

global memory - this is main memory of the GPU, it is accessible
to all threads in all blocks and persists over the execution of the
program.

constant memory - can't change over kernel execution, great if
threads all want to access the same constant information.

16

"Hello World" - OpenCL
So in this implementation of "Hello World" we are getting the

GPU to do the work of generating the string in parallel. So a single
thread does the work of outputing a single character in the string
we output.

CPU 1

2

3

GPU

Host Memory
Device Memory

"hello world" "hello world"

17

Overview Of Lab Activity
Bascially in this first lab you will have a go compiling and run the
code. And then make a small modification to the "hello world"
programs. This involves make add your name to the "hello" and
also making 1 thread be copy over 2 characters, rather, than just
the one.

"Hello Eric"

Device Memory

GPU

18

References
Flynn's taxonomy https://en.wikipedia.org/wiki/Flynn's_taxonomy

Using CUDA Warp-Level Primitives, Lin and Grover,
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/

Cuda C Programming Guide,
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

Benchmarking the cost of thread divergence in CUDA, Bialas
and Strzelecki, https://arxiv.org/pdf/1504.01650.pdf

