OpenCL Kernel Compilation

Slides taken from Hands On OpenCL by Simon Mcintosh-Smith, Tom Deakin, James Price, Tim Mattson and Benedict Gaster under the
"attribution CC BY" creative commons license.

https://handsonopencl.github.io/

Shipping OpenCL Kernels

* OpenCL applications rely on online*
compilation in order to achieve portability

— Also called runtime or JIT compilation

* Shipping source code with applications can be
an issue for commercial users of OpenCL

 There are a few ways to try protect your
OpenCL kernels

* OpenCL 2.2 C++ kernels are offline compiled — more later

Encrypting OpenCL Source

One approach is to encrypt the OpenCL source, and
decrypt it at runtime just before passing it to the
OpenCL driver

This could achieved with a standard encryption library,
or by applying a simple transformation such as Base64
encoding

This prevents the source from being easily read, but it
can still be retrieved by intercepting the call to
clCreateProgramWithSource ()

Obfuscation could also be used to make it more
difficult to extract useful information from the plain
OpenCL kernel source

Precompiling OpenCL Kernels

 OpenCL allows you to retrieve a binary from
the runtime after it is compiled, and use this
instead of loading a program from source

* This means that we can precompile our
OpenCL kernels and ship the binaries with our
application (instead of the source code)

Precompiling OpenCL Kernels

* Retrieving the binary:
// Create and compile program
program = clCreateProgramWithSource (context, 1, &kernel source, NULL, NULL);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// Get compiled binary from runtime

size_t size;

clGetProgramInfo (program, CL_PROGRAM BINARY SIZES, sizeof(size_t), &size, NULL);
unsigned char *binaries = malloc(sizeof (unsigned char) * size);

clGetProgramInfo (program, CL PROGRAM BINARIES, size, &binaries, NULL);

// Then write binary to file

* Loading the binary

// Load compiled program binary from file

// Create program using binary
program = clCreateProgramWithBinary (context, 1, devices, &size, &binaries,NULL,NULL) ;

clBuildProgram(program, 0, NULL, NULL, NULL, NULL); o

Precompiling OpenCL Kernels

* These binaries are only valid on the devices for
which they are compiled, so we potentially have
to perform this compilation for every device we
wish to target

* A vendor might change the binary definition at
any time, potentially our shipped
application

* |f a binary isn’t compatible with the target
device, an error will be returned either when
creating the program or building it

10

Portable Binaries -

* Khronos has produced a specification for a
Standard Portable Intermediate
Representation

* This defines a binary format that is designed
to be portable, allowing us to use the same
binary across many platforms

* Not yet supported by all vendors, but SPIR-V is
now core from OpenCL 2.1 onwards

— clCreateProgramWithIL ()

SPIR-V Overview

* Cross-vendor intermediate language

e Supported as core by both OpenCL and Vulkan APIs
— Two different ‘flavors’ of SPIR-V

— Environment specifications describe which features supported by each

* (Clean-sheet design, no dependency on LLVM

— Open-source tools* provided for SPIR-V<->LLVM translation

* Enables alternative kernel programming languages
— OpenCL 2.2 introduces a C++ kernel language using SPIR-V 1.2

e Offline compilation workflow

— Lowered to native ISA at runtime

*http://github.khronos.org

http://github.khronos.org

SPIR-V Ecosystem

New OpenCL 2.1 Compiler Ecosystem

i) Y 7 !
OpenCL C W f-Diverse domain-speci Wl OpenCL C++
- -specific |r {
{ Kernel Source e Languages, frameworks Kernel Source | 3
gt and tools / -
s y | OpenCL C++ to |
SPIR Generator J SPIR-V Compiler
(e.g. patched CLANG) .

s
Sbtpa: S prthus. com K hrerovrm A AR _// Hhmnﬂs l:DI'I‘.‘-JdEHI'Iﬂ

open source project for
OpenCL C++ front-end
W SPIR-V is in core OpenCL 2.1
o " SPI R SPIR-V designed as compiler target
z = N
- -, OpenCL 2.1 runtime can

O (DPEH':L] ingest OpenCL C OR SPIR-Y
{ Runtime -

o 4

- -

4

-

[Device)(] [Device Y J [Device Z]

(IWOCL 2015, Stanford University) 13

@ Copyright Khronos Group 2015 - Page 15

Generating Assembly Code

It can be useful to inspect compiler output to see
if the compiler is doing what you think it’s doing

On NVIDIA platforms the ‘binary’ retrieved is
actually PTX, their abstract assembly language

On AMD platforms you can add —save-temps
to the build options to generate .11 and .isa
files containing the intermediate representation
and native assembly code

Other vendors (such as Intel) may provide an
offline compiler which can generate LLVM/SPIR or
assembly

Kernel Introspection

* A mechanism for automatically discovering
and using new kernels, without having to
write any new host code

* This can make it much easier to add new
kernels to an existing application

 Provides a means for libraries and frameworks
to accept additional kernels from third parties

Kernel Introspection

 We can query a program object for the names of all

the kernels that it contains:

clGetProgramInfo (program,CL PROGRAM NUM KERNELS, ..);
clGetProgramInfo (program,CL PROGRAM KERNEL NAMES, ..);

 We can also query information about kernel

arguments (from OpenCL 1.2 onwards):
clGetKernellInfo(kernel, CL KERNEL NUM ARGS, ..);
clGetKernellInfo(kernel, CL KERNEL ARG *, .));

(the program should be compiled using the
-cl-kernel-arg-info option)

17

Separate Compilation and Linking

* OpenCL 1.2 gives more control over the build process by
adding two new functions:

clCompileProgram(programs|[0], ..);
program = clLinkProgram(context,..,programs) ;

* This enables the creation of libraries of compiled OpenCL
functions, that can be linked to multiple program objects

 Canimprove program build times, by allowing code shared
across multiple programs to be extracted into a common
library

OpenCL Kernel Compiler Flags

 OpenCL kernel compilers accept a number of
flags that affect how kernels are compiled:

-cl-opt-disable
-cl-single-precision-constant
-cl-denorms-are-zero
-cl-fp32-correctly-rounded-divide-sqrt
(-cl-mad-enable A
-cl-no-signed-zeros
-cl-unsafe-math-optimizations
\~Cl-finite-math-only)
-cl-fast-relaxed-math

20

OpenCL Kernel Compiler Flags

Vendors may expose additional flags to give further
control over program compilation, but these will not be
portable between different OpenCL platforms

For example, NVIDIA provide the —cl-nv-arch flag
to specify which GPU architecture should be targeted,
and —cl-nv-maxrregcount to limitthe number
of registers used

Some vendors support —On flags to control the
optimization level

AMD allow additional build options to be dynamically
added using an environment variable:
AMD OCL BUILD OPTIONS APPEND

21

Other compilation hints

* Can use an attribute to inform the compiler of
the work-group size that you intend to launch
kernels with:

__attribute ((reqd work group size(x, y, z)))

 As with C/C++, use the const/restrict
keywords for kernel arguments where
appropriate to make sure the compiler can
optimise memory accesses

22

Metaprogramming

 We can exploit runtime kernel compilation to
embed values that are only known at runtime
into kernels as compile-time constants

* |n some cases this can significantly improve
performance

* OpenCL compilers support the same
preprocessor definition flags as GCC/Clang:

—Dname
—Dname=value

Example: Multiply a vector by a
constant value

Passing the value as an argument

kernel void (\/| f'f]
r’ not known
global float *data, alue of "factor’ not known at

const float factor) application build time (e.g. passed
{ as a command-line argument)

int i = get_global id(0);
data[i] *= factor;

}

clBuildProgram(program, 0O, NULL, NULL,
NULL, NULL);

Example: Multiply a vector by a
constant value

Passing the value as an argument

kernel void (
global float *data,
const float £factor)

int i = get global id(0);
data[i] *= factor;

clBuildProgram(program, 0, NULL,

NULL, NULL, NULL);

Defining the value as a
preprocessor macro

kernel void (
global float *data)

{
int i = get global id(0);
data[i] *= factor;

}

sprintf (options, “-Dfactor=%f”",

userFactor) ;

clBuildProgram(program, 0, NULL,

options, NULL, NULL);

25

Metaprogramming

* Can be used to dynamically change the precision of a
kernel
— Use REAL instead of float/double, then define REAL
at runtime using OpenCL build options: —-DREAL=type

« Can make runtime decisions that change the
functionality of the kernel, or change the way
that it is implemented to improve performance
portability
— Switching between scalar and vector types
— Changing whether data is stored in buffers or images
— Toggling use of local memory

Metaprogramming

 All of this requires that we are compiling our
OpenCL sources at runtime - this doesn’t work if
we are precompiling our kernels or using SPIR

* OpenCL 2.2 and SPIR-V provide the concept of
specialization constants, which allow symbolic
values to be set at runtime

// OpenCL C++ kernel code

// Create specialization constant with ID 1 and default value of 3.0f
cl::spec_constant<float, 1> factor = {3.0f};

data[i] *= factor.get();

// Host code

// Set value of specialization constant and then build program

cl uint spec_id = 1;

clSetProgramSpecializationConstant (program, spec_id,
sizeof(float) , &userFactor);

clBuildProgram(program, 1, &device, , NULL, NULL); 27

Auto tuning

* Q: How do you know what the best parameter
values for your program are?

— What is the best work-group size, for example?
 A:Try them all! (Or a well chosen subset)

* This is where auto tuning comes in

— Run through different combinations of parameter
values and optimize the runtime (or another measure)
of your program.

Tuning Knobs:
Some general issues to think about

Tiling size (work-group sizes, dimensionality etc.)
— For block-based algorithms (e.g. matrix multiplication)
— Different devices might run faster on different block sizes
Data layout
— Array of Structures or Structure of Arrays (AoS vs. SoA)
— Column or Row major
Caching and prefetching
— Use of local memory or not
— Extra loads and stores assist hardware cache?
Work-item / work-group data mapping
— Related to data layout
— Also how you parallelize the work From Zhang, Sinclair Il and Chien:
Operation-specific tuning Improving Performance Portability in
. . OpenCL Programs — ISC13
— Specific hardware differences
— Built-in trig / special function hardware
— Double vs. float (vs. half)

Auto tuning example - Flamingo

http://mistymountain.co.uk/flamingo/

Python program which compiles your code with
different parameter values, and calculates the
“best” combination to use

Write a simple config file, and Flamingo will run
your program with different values, and returns
the best combination

Remember: scale down your problem so you
don’t have to wait for “bad” values (less
iterations, etc.)

http://mistymountain.co.uk/flamingo/

000000
000000
000000
000000
ooooooo
oooooo
ooooo
00000

00000

Auto tuning - Example

D2Q9 Lattice-Boltzmann

* What is the best work-group size for a specific problem size
(3000x2000) on a specific device (NVIDIA Tesla M2050)?

ggggggggggggg

Best: 60x1

Runtimes — lower is better

MWWW:MW:

X values

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

Collected with Flamingo (mistymountain.co.uk/flamingo)

Multi-objective auto-tuning (IWOCL'17)

90

¥ Jaochi
M Bilateral
“ BUDE

80 -

70 -

worst-case efficiency (%)

\5\

kernel optimized for

“Analyzing and improving performance portability of OpenCL applications via auto-tungrag”,
J.Price and S.Mclntosh-Smith, IWOCL 2017, https://dl.acm.org/citation.cfm?id=3078173

https://dl.acm.org/citation.cfm?id=3078173

