
OpenCL Kernel Compilation

Slides taken from Hands On OpenCL by Simon McIntosh-Smith, Tom Deakin, James Price, Tim Mattson and Benedict Gaster under the 
"attribution CC BY" creative commons license.

https://handsonopencl.github.io/


Shipping OpenCL Kernels

• OpenCL applications rely on online*
compilation in order to achieve portability

– Also called runtime or JIT compilation

• Shipping source code with applications can be 
an issue for commercial users of OpenCL

• There are a few ways to try protect your 
OpenCL kernels

* OpenCL 2.2 C++ kernels are offline compiled – more later
5



Encrypting OpenCL Source

• One approach is to encrypt the OpenCL source, and 
decrypt it at runtime just before passing it to the 
OpenCL driver

• This could achieved with a standard encryption library, 
or by applying a simple transformation such as Base64 
encoding

• This prevents the source from being easily read, but it 
can still be retrieved by intercepting the call to 
clCreateProgramWithSource()

• Obfuscation could also be used to make it more 
difficult to extract useful information from the plain 
OpenCL kernel source

6



Precompiling OpenCL Kernels

• OpenCL allows you to retrieve a binary from 
the runtime after it is compiled, and use this 
instead of loading a program from source

• This means that we can precompile our 
OpenCL kernels and ship the binaries with our 
application (instead of the source code)

7



Precompiling OpenCL Kernels
• Retrieving the binary:

// Create and compile program

program = clCreateProgramWithSource(context, 1, &kernel_source, NULL, NULL);

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// Get compiled binary from runtime

size_t size;

clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);

unsigned char *binaries = malloc(sizeof(unsigned char) * size);

clGetProgramInfo(program, CL_PROGRAM_BINARIES, size, &binaries, NULL);

// Then write binary to file

…

• Loading the binary
// Load compiled program binary from file

…

// Create program using binary

program = clCreateProgramWithBinary(context, 1, devices, &size, &binaries,NULL,NULL);

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
9



Precompiling OpenCL Kernels

• These binaries are only valid on the devices for 
which they are compiled, so we potentially have 
to perform this compilation for every device we 
wish to target

• A vendor might change the binary definition at 
any time, potentially breaking our shipped 
application

• If a binary isn’t compatible with the target 
device, an error will be returned either when 
creating the program or building it

10



Portable Binaries

• Khronos has produced a specification for a 
Standard Portable Intermediate 
Representation

• This defines a binary format that is designed 
to be portable, allowing us to use the same 
binary across many platforms

• Not yet supported by all vendors, but SPIR-V is 
now core from OpenCL 2.1 onwards
– clCreateProgramWithIL()

11



SPIR-V Overview

• Cross-vendor intermediate language

• Supported as core by both OpenCL and Vulkan APIs
– Two different ‘flavors’ of SPIR-V 

– Environment specifications describe which features supported by each

• Clean-sheet design, no dependency on LLVM
– Open-source tools* provided for SPIR-V<->LLVM translation

• Enables alternative kernel programming languages
– OpenCL 2.2 introduces a C++ kernel language using SPIR-V 1.2

• Offline compilation workflow
– Lowered to native ISA at runtime

*http://github.khronos.org 12

http://github.khronos.org


SPIR-V Ecosystem

(IWOCL 2015, Stanford University) 
13



Generating Assembly Code

• It can be useful to inspect compiler output to see 
if the compiler is doing what you think it’s doing

• On NVIDIA platforms the ‘binary’ retrieved is 
actually PTX, their abstract assembly language

• On AMD platforms you can add –save-temps
to the build options to generate .il and .isa
files containing the intermediate representation 
and native assembly code

• Other vendors (such as Intel) may provide an 
offline compiler which can generate LLVM/SPIR or 
assembly

14



Kernel Introspection

• A mechanism for automatically discovering 
and using new kernels, without having to 
write any new host code

• This can make it much easier to add new 
kernels to an existing application

• Provides a means for libraries and frameworks 
to accept additional kernels from third parties

15



Kernel Introspection

• We can query a program object for the names of all 
the kernels that it contains:
clGetProgramInfo(program,CL_PROGRAM_NUM_KERNELS, …);

clGetProgramInfo(program,CL_PROGRAM_KERNEL_NAMES, …);

• We can also query information about kernel 
arguments (from OpenCL 1.2 onwards):
clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, …);

clGetKernelInfo(kernel, CL_KERNEL_ARG_*, …);

(the program should be compiled using the

-cl-kernel-arg-info option)
17



Separate Compilation and Linking

• OpenCL 1.2 gives more control over the build process by 
adding two new functions:

clCompileProgram(programs[0], …);

program = clLinkProgram(context,…,programs);

• This enables the creation of libraries of compiled OpenCL 
functions, that can be linked to multiple program objects

• Can improve program build times, by allowing code shared 
across multiple programs to be extracted into a common 
library

19



• OpenCL kernel compilers accept a number of 
flags that affect how kernels are compiled:
-cl-opt-disable

-cl-single-precision-constant

-cl-denorms-are-zero

-cl-fp32-correctly-rounded-divide-sqrt

-cl-mad-enable

-cl-no-signed-zeros

-cl-unsafe-math-optimizations

-cl-finite-math-only

-cl-fast-relaxed-math

OpenCL Kernel Compiler Flags

20



OpenCL Kernel Compiler Flags

• Vendors may expose additional flags to give further 
control over program compilation, but these will not be 
portable between different OpenCL platforms

• For example, NVIDIA provide the –cl-nv-arch flag 
to specify which GPU architecture should be targeted, 
and –cl-nv-maxrregcount to limit the number 
of registers used

• Some vendors support –On flags to control the 
optimization level 

• AMD allow additional build options to be dynamically 
added using an environment variable: 
AMD_OCL_BUILD_OPTIONS_APPEND

21



Other compilation hints

• Can use an attribute to inform the compiler of 

the work-group size that you intend to launch 

kernels with:
__attribute__((reqd_work_group_size(x, y, z)))

• As with C/C++, use the const/restrict

keywords for kernel arguments where 

appropriate to make sure the compiler can 

optimise memory accesses
22



Metaprogramming

• We can exploit runtime kernel compilation to 
embed values that are only known at runtime 
into kernels as compile-time constants

• In some cases this can significantly improve 
performance

• OpenCL compilers support the same 
preprocessor definition flags as GCC/Clang:
–Dname

–Dname=value

23



Example: Multiply a vector by a 
constant value

Passing the value as an argument
kernel void vecmul(

global float *data,

const float factor)

{

int i = get_global_id(0);

data[i] *= factor;
}

clBuildProgram(program, 0, NULL, NULL, 
NULL, NULL);

Value of ‘factor’ not known at 
application build time (e.g. passed 
as a command-line argument)

24



Example: Multiply a vector by a 
constant value

Passing the value as an argument
kernel void vecmul(

global float *data,

const float factor)

{

int i = get_global_id(0);

data[i] *= factor;
}

clBuildProgram(program, 0, NULL, 
NULL, NULL, NULL);

Defining the value as a 
preprocessor macro
kernel void vecmul(

global float *data)

{

int i = get_global_id(0);

data[i] *= factor;
}

sprintf(options, “-Dfactor=%f”, 
userFactor);

clBuildProgram(program, 0, NULL, 
options, NULL, NULL);

25



Metaprogramming

• Can be used to dynamically change the precision of a 
kernel

– Use REAL instead of float/double, then define REAL
at runtime using OpenCL build options: –DREAL=type

• Can make runtime decisions that change the 

functionality of the kernel, or change the way 

that it is implemented to improve performance 

portability

– Switching between scalar and vector types

– Changing whether data is stored in buffers or images

– Toggling use of local memory
26



Metaprogramming

• All of this requires that we are compiling our 

OpenCL sources at runtime – this doesn’t work if 

we are precompiling our kernels or using SPIR

• OpenCL 2.2 and SPIR-V provide the concept of 

specialization constants, which allow symbolic 

values to be set at runtime

// OpenCL C++ kernel code

// Create specialization constant with ID 1 and default value of 3.0f

cl::spec_constant<float, 1> factor = {3.0f};

data[i] *= factor.get();

// Host code

// Set value of specialization constant and then build program

cl_uint spec_id = 1;

clSetProgramSpecializationConstant(program, spec_id, 

sizeof(float), &userFactor);

clBuildProgram(program, 1, &device, "", NULL, NULL);
27



Auto tuning

• Q: How do you know what the best parameter 
values for your program are?
– What is the best work-group size, for example?

• A: Try them all! (Or a well chosen subset)

• This is where auto tuning comes in
– Run through different combinations of parameter 

values and optimize the runtime (or another measure) 
of your program.

32



Tuning Knobs:
Some general issues to think about

• Tiling size (work-group sizes, dimensionality etc.)
– For block-based algorithms (e.g. matrix multiplication)
– Different devices might run faster on different block sizes

• Data layout
– Array of Structures or Structure of Arrays (AoS vs. SoA)
– Column or Row major

• Caching and prefetching
– Use of local memory or not
– Extra loads and stores assist hardware cache?

• Work-item / work-group data mapping
– Related to data layout
– Also how you parallelize the work

• Operation-specific tuning
– Specific hardware differences
– Built-in trig / special function hardware
– Double vs. float (vs. half)

From Zhang, Sinclair II and Chien: 
Improving Performance Portability in 
OpenCL Programs – ISC13

33



Auto tuning example - Flamingo

• http://mistymountain.co.uk/flamingo/

• Python program which compiles your code with 
different parameter values, and calculates the 
“best” combination to use

• Write a simple config file, and Flamingo will run 
your program with different values, and returns 
the best combination

• Remember: scale down your problem so you 
don’t have to wait for “bad” values (less 
iterations, etc.)

34

http://mistymountain.co.uk/flamingo/


Auto tuning - Example

• D2Q9 Lattice-Boltzmann

• What is the best work-group size for a specific problem size 
(3000x2000) on a specific device (NVIDIA Tesla M2050)?

X values

Y values

Runtimes – lower is better

Best: 60x1

Collected with Flamingo (mistymountain.co.uk/flamingo) 35



Multi-objective auto-tuning (IWOCL’17)

36
“Analyzing and improving performance portability of OpenCL applications via auto-tuning”,
J.Price and S.McIntosh-Smith, IWOCL 2017, https://dl.acm.org/citation.cfm?id=3078173

https://dl.acm.org/citation.cfm?id=3078173

