| Australian
' National

o~

ey University

OpenCL Kernel Programming



https://handsonopencl.github.io/

OpenCL C for Compute Kernels

e Derived from

: no recursion, function pointers, functions in C99
standard headers ...

* Preprocessing directives defined by C99 are supported
(#include, #if etc.)

* Built-in data types
* Scalar and vector data types, pointers

* Data-type conversion functions:

* convert type< sat>< roundingmode>
* Image types:

* image2d t, image3d t and sampler t



OpenCL C for Compute Kernels

* Built-in functions —
* Work-ltem functions, math.h, read/write images
* Relational, geometric functions, synchronization functions
e printf (OpenCL v1.2 or later)

* Built-in functions —
* Double precision, atomics to global and local memory
» Selection of rounding modes, writes to image3d_t surface



OpenCL C Language Highlights
Function qualifiers

qualifier declares a function as a kernel
* |.e. makes it visible to host code so it can be enqueued

» Kernels can call other (non kernel) device-side functions

Address space qualifiers

* Pointer kernel arguments must have an address space qualifier

Work-item functions
etc.

Synchronization functions

* Barriers - all work-items within a work-group must execute the barrier function
before any work-item can continue

* Memory fences - provides ordering between memory operations



OpenCL C Language Restrictions

* Pointers to functions are allowed

* Pointers to pointers allowed a kernel, but not as an
argument to a kernel invocation

* Bit-fields are supported
 Variable length arrays and structures are supported
e Recursion is supported (yet!)

* Double types are optional in OpenCL v1.1, but the key
word is reserved

(note: most implementations support double)



Matrix multiplication: sequential code

We calculate C=AB, where all three matrices are NxN

mat mul ( N, *A, *B, *C)
{
i, 3, k;
for (i = 0; 1 < N; i++) {
for (j = 0; j < N; j++) {
C[i*N+j] = 0.0f;
for (k = 0; k < N; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,])
C[i*N+j] += A[1*N+k] * B[k*N+j];
}
} Cli]
] .
}

Dot product of a row of A and a column of B for each elementof C



Matrix multiplication
performance

e Serial C code on CPU (single core).

Case GFLOP/s
CPU GPU

Device is 2x Intel® Xeon® CPU, E5-2695 v4 @
2.1GHz (36 cores total) using gcc v6.1.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Third party names are the property of their owners.



Matrix multiplication: OpenCL kernel (1/2)

mat mul ( N, *A,
- *B, *C)

i, 3, k;
for (i = 0; 1 < N; i++) {
for (3 = 0; J < N; Jj++) {
C[i*N+3j] = 0.0f;
for (k = 0; k < N; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,3)
C[i*N+3j] += A[i*N+k] * B[k*N+j];

60




Matrix multiplication: OpenCL kernel (2/2)

mat mul ( N, *A,
- *B, *C)

i, j, k;
i = get global id(0);
jJ = get _global id(1);
C[i*N+3j] = 0.0f;
for (k = 0; k < N; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,3)
C[i*N+3j] += A[i*N+k] * B[k*N+j];

61



Matrix multiplication: OpenCL kernel

mat mul ( N, *A,
*B, *C)

i, 3, k;

i = get global id(0);

j = get global id(1);

C[i*N+j] = 0.0f;

for (k = 0; k < N; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,])
C[i*N+j] += A[i*N+k] * B[k*N+j];

62



Matrix multiplication: OpenCL kernel improved

Rearrange and use a local scalar for intermediate C element values (a
common optimization in matrix multiplication functions)

{
void mmul ( int k;
const int N, int 1 = get global id(0);
float *A, int j = get global id(1);
float *B, float tmp = 0.0f;

tmp += A[i*N+k]*B[k*N+]j];

C[i*N+j] = tmp;

63



Matrix multiplication host program (C++ API)

Setup buffers and write A
and B matrices to the
device memory

Declare and
initialize data

Create the kernel functor

Setup the
platform and build
program

Run the kernel and
collect results

Note: To use the default context/queue/device, skip this section and remove the

. 64
references to context, queue and device.



Matrix multiplication
performance

* Matrices are stored in global memory.
 All the following results are from running C host code

Case GFLOP/s
CPU GPU
C(i,j) per work-item, all global 111.8 70.3

Device is NVIDIA® Tesla® P100 GPU with 56 compute units, 3,584 PEs, CUDA
9.1.84
Device is 2x Intel® Xeon® CPU, E5-2695 v4 @ 2.1GHz

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Third party names are the property of their owners.



