Australian

- University

Overview of OpenCL

https://handsonopencl.github.io/

Australian
National

= University

OpenCL Resources

 OpenCL v1.2 Reference Card

— https://lwww.khronos.org/files/opencl-1-2-quick-reference-card.pdf
 OpenCL C++ Wrapper v1.2 Reference Card

— https://www.khronos.org/files/OpenCLPP12-reference-card.pdf
* OpenCL v1.2 Specification

— https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/OpenCLPP12-reference-card.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

't’s a Heterogeneous world

A modern computing
platform may include:

* One or more CPUs

* One or more GPUs

* DSP processors E.g. Intel® Core i7-8700K:
e Accelerators * Six-core Coffee Lake x86
with Intel® UHD Graphics

e ...and more ...

OpenCL lets Programmers write a single portable program that
uses ALL resources in the heterogeneous platform

Processor trends

Individual processors have many (possibly heterogeneous) cores.

72 c:ores

84 wide SIMD |
64 Wide SIMD

-l: 576 Tensor Cores

Hok 72 RT Cores

AMD® Vega

Intel® Xeon Phi™
(KNL) CPU

NVIDIA® Turing®
RTX 8000

The Heterogeneous many-core challenge:

How are we to build a software ecosystem for the
Heterogeneous many core platform?

5
Third party names are the property of their owners.

Many-core performance potentia

2.5 350
“ Peak TFLOPS © Peak GBytes/s -
300 E
2.0)
250 2
£
Tz
E.T‘ s 200 _E
Q c
E e 150 @
= . =
s o
& 100 E
=]
0.5 =
50 E
0.0 0
Intel XeonlIntel Xeon Nvidia Nvidia AMDHD AMD
E5-2687 Phi SE1I0P M2090 K40 7970 59150

How do we unlock this potential?

* Need efficient, expressive, parallel programming
languages

* Also need cross-platform standards

* |deally not just for HPC so that they have sufficient
momentum for the long term

* OpenCL is the only mainstream parallel
programming language that meets all these many-
core requirements today

Industry Standards for Programming
Heterogeneous Platforms

GPUs

Increasingly general purpose
data-parallel computing

, CPUs o Emerging
Multiple cores driving Intersection

performance increases
,‘EE\

" OpenCL Graphics APIs
S A eI Heterogeneous and Shading
programming — Computing Languages

e.g. OpenMP

OpenCL — Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

8

The origins of OpenCL

AMD Merged, needed T
commonality e
ATI across products _

Wrote a rough draft

GPU vendor — straw man API —

NVIDIA - wants to steal

market share
from CPU

Khron
CPU vendor — Con? L?tse fou —
wants to steal P group \ 4
Intel — formed

market share
from GPU SEES
&
s 74
Was tired of recoding for
__ many core, GPUs. OpenCL
Pushed vendors to
standardize. 9

Third party names are the property of their owners.

Apple

OpenCL Working Group within Khronos

* Diverse industry participation

* Processor vendors, system OEMSs, middleware vendors,
application developers.

* OpenCL became an important standard upon release by
virtue of the market coverage of the companies behind
it.

LABS aaveon|BIZE) AMDIU ARM ol &

@

\

||||
-1

N7) = T
&c_ode.p\my ERICSSON Z “freescale” (&9

@ :mima‘. NOKIA @

\ WA Hu s Ariohy RO b= INVIISUA. ""‘ SOUFTWARE SYSTEMS

. <A 1 Vé.
RAPIDAMIND @ :d TAKUMI k’ TEXAS ";b W% ke
INSTRUMENTS = il <

5 YSTEMS I

KHRONOS 10

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/

OpenCL 2.2 Released November 2017

* OpenCL first launched Jun’08
* 6 months from “strawman” to OpenCL 1.0

e Rapid innovation to match pace of hardware innovation
 Committed to backwards compatibility to protect software

investments
LN R LEZN
&4 &4
OpenCL OpenCL
2011 2013 2015 2017
OpenCL 1.2 OpenCL 2.0 OpenCL 2.1 OpenCL 2.2
SPIR-V 1.0 SPIR-V 1.2
Becomes Enables new class
industry of hardware SPIR-V 1.1 in Core OpenCL C++
baseline for SVM Kernel Language Kernel Language
heterogeneous Generic Addresses Flexibility Statllc subse'ij of C+|;c1] 4
parallel On-device dispatch Templates and Lambdas
computing SPIR-V 1.2 in Core

OpenCL C++ support

Pipes
Efficient device-scope
communication between kernels

OpenCL: From cell phone to supercomputer

* OpenCL Embedded profile for
mobile and embedded silicon

* Relaxes some data type and
precision requirements

* Avoids the need for a separate
“ES” specification
* Khronos APIs provide
computing support for imaging
& graphics

* Enabling advanced applications

in, e.g., Augmented Reality A camera phone with GPS
_ processes images to overlay
* OpenCL will enable parallel senerated images on
computing in new markets surrounding scenery

* Mobile phones, cars, avionics
12

OpenCL Platform Model

00O
000 H
=

1%

15| &
Ol B

|
(O

—

Il_|
nmmn
1

Processing

—
Element Eo
non

-

Compute Unit OpenCL Device

O

=

Host

/

* One and one or more
* Each OpenCL Device is composed of one or more

 Each Compute Unit is divided into one or more

* Memory divided into and device memory

OpenCL Platform Example
(One node, two CPU sockets, two GPUs)

* Treated as one OpenCL * Each GPU is a separate OpenCL

device device
* One CU per core e Can use CPU and all GPU devices

, concurrently through OpenCL
* 1 PE per CU, or if PEs

mapped to SIMD lanes, n
PEs per CU, where n
matches the SIMD width

* Remember:

 the CPU will also have to be
its own host!

CU = Compute Unit; PE = Processing Element

14

The idea behind OpenCL

* Replace loops with functions (a) executing at each

point in a problem domain

e E.g., process an n element array with one kernel invocation per

element

void
mul (const int n,
const float *a,
const float *Db,
float *c)

int 1i;
for (1 = 0; i < n; i++)

c[i] = a[i] * b[i];

void
mul (const float *a,
const float *Db,
float *c)
{
int 1 = (0) ;

c[i] = a[i] * b[1i];
}
// many instances of the kernel,
// called work-items, execute
// in parallel 15

An N-dimensional domain of work-items

* Global Dimensions:
e 1024x1024 (whole problem space)

* Local Dimensions:
e 128x128 (work-group, executes together)

1024
Synchronization between work-

items possible only within

I
======== work-groups:
EEEEEEN and

1024

AN |
B = Cannot synchronize
HEEEEEEEE between work-groups
HEEEEEER within a kernel

* Choose the dimensions that are “best” for your
algorithm

16

OpenCL N Dimensional Range
(NDRange)

* The problem we want to compute will have some
’
* E.g. compute a kernel on all points in a rectangle

* When we execute the kernel we specify

e We also in each
dimension; this is called the

* We associate each point in the iteration space with a

OpenCL N Dimensional Range
(NDRange)

* Work-items are grouped into ; work-items
within a work-group can share and can

* We can specify the number of work-items in a work-
group; this is called the (or work-group size)

* Or you can let the OpenCL run-time choose the work-
group size for you (may not be optimal)

OpenCL Memory model

* Private Memor
. y Private Private Private Private
d Per WOFk—Item Memory Memory Memory Memory

Work-Item Work-Iltem Work-ltem Work-Item

e Shared within a

* Global Memory / Work Group Work-Group
Constant Memory

* Visible to all Compute Device
work-groups

* Host memory
* Onthe CPU

Host Memory

Memory management is explicit:
You are responsible for moving data from
host — global — local and back 19

The Memory Hierarchy

Bandwidths

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
0O(800-1,000) GBytes/s

Host memory
O(10) GBytes/s

Sizes

Private memory
O(10) words/WI

Local memory
O(1) KBytes/WG

Global memory
O(10) GBytes

Host memory
0(10-100) GBytes

Speeds and feeds approx. for a high-end discrete GPU, circa 2018

20

