
Overview of OpenCL

Slides taken from Hands On OpenCL by Simon McIntosh-Smith, Tom Deakin, James Price, Tim Mattson and Benedict Gaster

under the "attribution CC BY" creative commons license.

https://handsonopencl.github.io/


OpenCL Resources

• OpenCL v1.2 Reference Card

– https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf

• OpenCL C++ Wrapper v1.2 Reference Card

– https://www.khronos.org/files/OpenCLPP12-reference-card.pdf

• OpenCL v1.2 Specification

– https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

3

https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/OpenCLPP12-reference-card.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf


It’s a Heterogeneous world

OpenCL lets Programmers write a single portable program that 
uses ALL resources in the heterogeneous platform

A modern computing 
platform may include:

• One or more CPUs

• One or more GPUs

• DSP processors

• Accelerators

• FPGAs

• … and more …

E.g. Intel® Core i7-8700K:

• Six-core Coffee Lake x86 
with Intel® UHD Graphics 
630

4



Processor trends
Individual processors have many (possibly heterogeneous) cores.

The Heterogeneous many-core challenge:
How are we to build a software ecosystem for the
Heterogeneous many core platform?

Third party names are the property of their owners.

64 cores

16 wide SIMD

NVIDIA® Turing® 

RTX 8000

64 cores

64 wide SIMD

AMD® Vega
Intel® Xeon Phi™ 

(KNL) CPU

72 cores

64 wide SIMD

+ 576 Tensor Cores

+ 72 RT Cores

5



Many-core performance potential

6



How do we unlock this potential?

• Need efficient, expressive, parallel programming 
languages

• Also need cross-platform standards

• Ideally not just for HPC so that they have sufficient 
momentum for the long term

• OpenCL is the only mainstream parallel 
programming language that meets all these many-
core requirements today

7



Industry Standards for Programming 
Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of 
heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving 
performance increases

GPUs
Increasingly general purpose 

data-parallel computing

Graphics APIs 
and Shading 
Languages

Multi-processor 
programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

8



The origins of OpenCL

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed 

commonality 

across products

GPU vendor –

wants to steal 

market share 

from CPU

CPU vendor –

wants to steal 

market share 

from GPU

Was tired of recoding for 

many core, GPUs.

Pushed vendors to 

standardize.

Wrote a rough draft 

straw man API

Khronos 

Compute group 

formed

ARM

Nokia

IBM

Sony

Qualcomm

Imagination

TI

Third party names are the property of their owners.

+ many more

9



OpenCL Working Group within Khronos

• Diverse industry participation
• Processor vendors, system OEMs, middleware vendors, 

application developers.

• OpenCL became an important standard upon release by 
virtue of the market coverage of the companies behind 
it.

Third party names are the property of their owners.

10

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/


OpenCL 2.2 Released November 2017
• OpenCL first launched Jun’08

• 6 months from “strawman” to OpenCL 1.0

• Rapid innovation to match pace of hardware innovation
• Committed to backwards compatibility to protect software 

investments

2011
OpenCL 1.2

Becomes 
industry 

baseline for 
heterogeneous

parallel 
computing

OpenCL 2.1
SPIR-V 1.0

SPIR-V 1.1 in Core
Kernel Language 

Flexibility

OpenCL 2.2
SPIR-V 1.2 

OpenCL C++ 
Kernel Language

Static subset of C++14
Templates and Lambdas

SPIR-V 1.2 in Core
OpenCL C++ support

Pipes
Efficient device-scope 

communication between kernels

201720152013
OpenCL 2.0

Enables new class 
of hardware 

SVM
Generic Addresses
On-device dispatch

11



OpenCL: From cell phone to supercomputer

• OpenCL Embedded profile for 
mobile and embedded silicon

• Relaxes some data type and 
precision requirements

• Avoids the need for a separate 
“ES” specification

• Khronos APIs provide 
computing support for imaging 
& graphics

• Enabling advanced applications 
in, e.g., Augmented Reality

• OpenCL will enable parallel 
computing in new markets

• Mobile phones, cars, avionics

A camera phone with GPS 
processes images to overlay 

generated images on 
surrounding scenery

12



OpenCL Platform Model

• One Host and one or more OpenCL Devices
• Each OpenCL Device is composed of one or more

Compute Units
• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 
Element

OpenCL Device

…
…

…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

13



OpenCL Platform Example
(One node, two CPU sockets, two GPUs)

CPUs:

• Treated as one OpenCL 
device

• One CU per core

• 1 PE per CU, or if PEs 
mapped to SIMD lanes, n
PEs per CU, where n
matches the SIMD width

• Remember:
• the CPU will also have to be 

its own host!

GPUs:
• Each GPU is a separate OpenCL 

device

• Can use CPU and all GPU devices 
concurrently through OpenCL

CU = Compute Unit; PE = Processing Element
14



The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each 

point in a problem domain
• E.g., process an n element array with one kernel invocation per 

element

Traditional loops Data Parallel OpenCL

void

mul(const int n,

const float *a,

const float *b,

float *c)

{

int i;

for (i = 0; i < n; i++)

c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

__global const float *b,

__global       float *c)

{

int i = get_global_id(0);

c[i] = a[i] * b[i];

}

// many instances of the kernel,

// called work-items, execute

// in parallel 15



An N-dimensional domain of work-items
• Global Dimensions:

• 1024x1024 (whole problem space)

• Local Dimensions:
• 128x128 (work-group, executes together)

• Choose the dimensions that are “best” for your 
algorithm

1024

1
0

2
4

Synchronization between work-
items possible only within 

work-groups:
barriers and memory fences

Cannot synchronize 
between work-groups

within a kernel

16



OpenCL N Dimensional Range 
(NDRange)

• The problem we want to compute will have some 
dimensionality; 

• E.g. compute a kernel on all points in a rectangle

• When we execute the kernel we specify up to 3 
dimensions

• We also specify the total problem size in each 
dimension; this is called the global size

• We associate each point in the iteration space with a 
work-item

17



OpenCL N Dimensional Range 
(NDRange)

• Work-items are grouped into work-groups; work-items 
within a work-group can share local memory and can 
synchronize

• We can specify the number of work-items in a work-
group; this is called the local size (or work-group size)

• Or you can let the OpenCL run-time choose the work-
group size for you (may not be optimal)

18



OpenCL Memory model
• Private Memory

• Per work-item

• Local Memory
• Shared within a

work-group

• Global Memory / 
Constant Memory

• Visible to all
work-groups

• Host memory
• On the CPU

Memory management is explicit: 

You are responsible for moving data from

host → global → local and back 19



The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1) KBytes/WG

Global memory
O(10) GBytes

Host memory
O(10-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(800-1,000) GBytes/s

Host memory
O(10) GBytes/s

Speeds and feeds approx. for a high-end discrete GPU, circa 2018

Bandwidths Sizes

20


