
Vectorization in OpenCL

Slides taken from Hands On OpenCL by Simon McIntosh-Smith, Tom Deakin, James Price, Tim Mattson and Benedict Gaster

under the "attribution CC BY" creative commons license.

https://handsonopencl.github.io/

Vectorization

• OpenCL C provides a set of vector types:

– type2, type3, type4, type8 and type16

– Where type is any primitive data type

• Than can be convenient for representing multi-component data:

– Pixels in an image (RGBA)

– Atoms or points (x, y, z, mass/type)

• There are also a set of built-in geometric functions for operating on
these types (dot, cross, distance, length, normalize)

22

Vectorization

• In the past, several platforms required the use of these types in

order to make use of their vector ALUs (e.g. AMD’s pre-GCN

architectures and Intel’s initial CPU implementation)

• This isn’t ideal: we are already exposing the data-parallelism in our

code via OpenCL’s NDRange construct – we shouldn’t have to do it

again!

• These days, most OpenCL implementations target SIMD execution

units by packing work-items into SIMD lanes – so we get the

benefits of these vector ALUs for free (Intel calls this ‘implicit

vectorisation’)

23

Vectorization
Implicit vectorization Explicit vectorization

24

Vectorization

• You may come across some platforms that still require explicit

vectorization

• As the architectures and compilers mature, we expect to see a

continued shift towards simple, scalar work-items

• You can query an OpenCL device to determine whether it prefers

scalar or vector data types, e.g:

clGetDeviceInfo(device,

CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT,

sizeof(cl_uint), &width, NULL);

26

