| Australian

Q<= National
sy University

Vectorization in OpenCL

https://handsonopencl.github.io/

Australian
National

ez University

Vectorization

 OpenCL C provides a set of vector types:
- type2, type3, type4, type8 and typel6
— Where type is any primitive data type
« Than can be convenient for representing multi-component data:
— Pixels in an image (RGBA)
— Atoms or points (X, y, z, mass/type)

* There are also a set of built-in geometric functions for operating on
these types (dot, cross, distance, length, normalize)

22

Australian
» National

23 University

Vectorization

* In the past, several platforms required the use of these types in
order to make use of their vector ALUs (e.g. AMD'’s pre-GCN
architectures and Intel’s initial CPU implementation)

 Thisisn’t ideal: we are already exposing the data-parallelism in our
code via OpenCL’s NDRange construct — we shouldn’t have to do it
again!

« These days, most OpenCL implementations target SIMD execution
units by packing work-items into SIMD lanes — so we get the
benefits of these vector ALUs for free (Intel calls this ‘implicit
vectorisation’)

23

Australian

» National
=23 University

Vectorization

Implicit vectorization Explicit vectorization
float a = ...; floatd a =
float b = ...; floatd b = ...;
float ¢ = a + b; floatd ¢ = a + b;
Work-item Work-item Work-item Work-item Wurlgium
0 1 2 3

a+b a+b a+b a+b a.x+b.x a.y+b.y a.z#b.z a.w+b.w
L N | N | L L L L W |

PE| [PE] [PE] [PE PE | [PE] [PE] [PE

Work-item| |Work-item| |Work-item| |Work-item Sl
4 5 6 7 1
1
a+b a+bl a+bl a+b a.x+b.x a.y0|b.y a.10|b.z a.WO{b.w
\?f b 4 L \v/ \YI \“'I \yf \Yl

PE| | PE||PE||PE PE||PE||PE||PE

Australian
» National

3 University

Vectorization

You may come across some platforms that still require explicit
vectorization

As the architectures and compilers mature, we expect to see a
continued shift towards simple, scalar work-items

You can query an OpenCL device to determine whether it prefers
scalar or vector data types, e.g:

(device,
CL DEVICE PREFERRED VECTOR WIDTH FLOAT,
sizeof (cl uint), &width, NULL) ;

26

