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Vectorization in OpenCL
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 OpenCL C provides a set of vector types:
- type2, type3, type4, type8 and typel6
— Where type is any primitive data type
« Than can be convenient for representing multi-component data:
— Pixels in an image (RGBA)
— Atoms or points (X, y, z, mass/type)

* There are also a set of built-in geometric functions for operating on
these types (dot, cross, distance, length, normalize)

22



Australian
» National

23 University

Vectorization

* In the past, several platforms required the use of these types in
order to make use of their vector ALUs (e.g. AMD'’s pre-GCN
architectures and Intel’s initial CPU implementation)

 Thisisn’t ideal: we are already exposing the data-parallelism in our
code via OpenCL’s NDRange construct — we shouldn’t have to do it
again!

« These days, most OpenCL implementations target SIMD execution
units by packing work-items into SIMD lanes — so we get the
benefits of these vector ALUs for free (Intel calls this ‘implicit
vectorisation’)
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Implicit vectorization Explicit vectorization
float a = ...; floatd a =
float b = ...; floatd b = ...;
float ¢ = a + b; floatd ¢ = a + b;
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You may come across some platforms that still require explicit
vectorization

As the architectures and compilers mature, we expect to see a
continued shift towards simple, scalar work-items

You can query an OpenCL device to determine whether it prefers
scalar or vector data types, e.g:

(device,
CL DEVICE PREFERRED VECTOR WIDTH FLOAT,
sizeof (cl uint), &width, NULL) ;
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