
Directive-Based Programming

with OpenMP

Shared Memory Programming

• Explicit thread creation (pthreads):
pthread t thread;

pthread create(&thread, &attr, some_function, (void ∗)
&result);

…

pthread join(thread, NULL);

• Tasks (C++ 11):
auto handle = std::async(std::launch::async, some_code, ...);

auto result = handle.get();

• Kernels (CUDA):
__global__

void someKernel(...) {

int idx = blockIdx.x*blockDim.x + threadIdx.x

// execute code for given index

}

23

OpenMP

• API for shared memory parallel programming targeting Fortran, C

and C++

• specifications maintained by OpenMP Architecture Review Board

(ARB)

• members include AMD, ARM, Cray, Intel, Fujitsu, IBM, NVIDIA

– versions 1.0 (Fortran ’97, C ’98) - 3.1 (2011) shared memory

– 4.0 (2013) accelerators, NUMA

– 4.5 (2015) improved memory mapping, SIMD

– 5.0 (2018) improved accelerator support

25

OpenMP

• comprises compiler directives, library routines and environment

variables

– C directives (case sensitive)
#pragma omp directive-name [clause-list]

– library calls begin with omp
void omp_set_num_threads(int nthreads);

– environment variables begin with OMP
export OMP_NUM_THREADS=4

• requires compiler support

– activated via -fopenmp (gcc/clang) or -openmp (icc) compiler flags

26

The parallel Directive

• OpenMP uses a fork/join model: programs execute serially until they

encounter a parallel directive:

– this creates a group of threads

– number of threads is dependent on the OMP_NUM_THREADS environment

variable or set via function call, e.g. omp_set_num_threads(nthreads)

– main thread becomes the master thread, with thread id of 0
#pragma omp parallel [clause-list]

{

/*structured block*/

}

• each thread executes the structured block

27

Fork/Join in OpenMP

• Conceptually, threads are created and destroyed for each parallel

region; in practice, usually implemented as a thread pool

28

A1, Fork join, CC BY 3.0

https://en.wikipedia.org/wiki/en:User_A1
https://commons.wikimedia.org/wiki/File:Fork_join.svg
https://creativecommons.org/licenses/by/3.0/legalcode

Parallel Directive: Clauses

Clauses are used to specify:

• conditional parallelization: to determine if the parallel construct

results in creation/use of threads
if (scalar-expression)

• degree of concurrency: explicit specification of the number of

threads created/used
num threads(integer-expression)

• data handling: to indicate if specific variables are local to the thread

(allocated on the thread’s stack), global, or ‘special’
private(variable-list)

shared(variable-list)

firstprivate(variable-list)

default(shared j none)

29

Compiler Translation: OpenMP to Pthreads

• OpenMP code
main() {

int a, b;

// serial segment

pragma omp parallel num_threads(8) private(a) shared(b)

{ /* parallel segment */ }

// rest of serial segment

}

• Pthreads equivalent (structured block is outlined)
main() {

int a, b;

// serial segment

for (i=0; i<8; i++) pthread_create (..... , internal_thunk ,...);

for (i=0; i<8; i++) pthread_join (........);

// rest of serial segment

}

void *internal_thunk(void *packaged argument) {

int a;

/* parallel segment */

}

30

Parallel Directive Examples

pragma omp parallel if (is_parallel == 1) num_threads(8) \

private(a) shared(b) firstprivate(c)

• if the value of variable is_parallel is one, eight threads are used

• each thread has private copy of a and c, but all share one copy of b

• the value of each private copy of c is initialized to value of c before

the parallel region
pragma omp parallel reduction(+ : sum) num_threads(8) \

default(private)

• eight threads get a copy of the variable sum

• when threads exit, the values of these local copies are accumulated

into the sum variable on the master thread

– other reduction operations include *, -, &, |, ^, &&, ||

• all variables are private unless otherwise specified

31

Example: Computing Pi

compute π by generating random points in square of side length 2

centred at (0,0), and counting points falling within circle of radius 1

– area of square = 4, area of circle: πr2 = π

– ratio of points in circle to outside approaches π/4

pragma omp parallel private(i) shared(npoints) \

reduction(+ : sum) num_threads(8)

{ int seed = omp_get_thread_num(); // private

num threads = omp_get_num_threads();

sum = 0;

for (i = 0; i < npoints / num_threads; i++) {

rand_x = (double) rand_range (& seed , -1, 1);

rand_y = (double) rand_range (& seed , -1, 1);

if ((rand_x * rand_x + rand_y * rand_y) <= 1.0)

sum ++;

}

}

32

Jirah, Monte-Carlo01,

CC BY-SA 3.0

https://commons.wikimedia.org/wiki/User:Jirah
https://commons.wikimedia.org/wiki/File:Monte-Carlo01.gif
https://creativecommons.org/licenses/by-sa/3.0/legalcode

The for Work-Sharing Directive

• use with the parallel directive to partition a subsequent for loop
pragma omp parallel shared(npoints) \

reduction (+: sum) num_threads(8)

{ int seed = omp_get_thread_num();

sum = 0;

pragma omp for

for (i = 0; i < npoints ; i++) {

rand x = (double) rand_range(& seed, -1, 1);

rand y = (double) rand_range(& seed, -1, 1);

if ((rand_x * rand_x + rand_y * rand_y) <= 1.0) sum++;

}

}

– the loop index (i) is assumed to be private

– only two directives plus sequential code (code is easy to read/maintain)

• implicit synchronization at the end of the loop

– can add a nowait clause to prevent this

• it is common to merge the directives: #pragma omp parallel for ...

33

Assigning Iterations to Threads

• the schedule clause of the for directive assigns iterations to threads
• schedule(static[,chunk-size])

– splits the iteration space into chunks of size chunk-size and allocates

to threads in round-robin fashion

– if chunk size is unspecified, number of chunks equals number of threads

• schedule(dynamic[,chunk-size])

– iteration space is split into chunk-size blocks scheduled dynamically

• schedule(guided[,chunk-size])

– chunk size decreases exponentially with iterations to a minimum of
chunk-size

• schedule(runtime)

– determine scheduling based on setting of the OMP_SCHEDULE

environment variable

34

Synchronization in OpenMP

• barrier: each thread waits until others arrive (nowait: skip barrier)

• single: executed by one thread only
#pragma omp parallel

{

// my part of computation

#pragma omp single

{ /* executed by one thread */ }

#pragma omp barrier

#pragma omp for nowait

for (i=0; i<N; i++) {

// data parallel part

}

// threads continue here automatically

}

35

