
Course Overview

• Day 1: Fundamentals

– accelerator architectures, review of shared-memory programming

• Day 2: Programming for GPUs

– thread management, memory management, streaming

• Day 3: Advanced GPU Programming

– performance profiling, reductions, synchronization

• Day 4: OpenCL Programming

– C and C++ APIs, kernel programming, memory hierarchy

• Day 5: Advanced OpenCL and Futures

– synchronization, metaprogramming, FPGA, next-generation

architectures

• https://cs.anu.edu.au/courses/acceleratorsHPC/fundamentals/

• https://github.com/ANU-HPC/accelerator-programming-course

3

https://github.com/ANU-HPC/accelerator-programming-course
https://github.com/ANU-HPC/accelerator-programming-course

Setup

git clone https://github.com/ANU-HPC/accelerator-

programming-course.git

or fork the repository and clone your fork, then

git remote add upstream https://github.com/ANU-

HPC/accelerator-programming-course.git

cd accelerator-programming-course

./run_docker.sh

or

./run_docker_with_gui.sh

4

https://github.com/ANU-HPC/accelerator-programming-course.git
https://github.com/ANU-HPC/accelerator-programming-course.git

Accelerator Architectures

Accelerators for Parallel Computing

Goal: solve big problems (quickly)

-> Divide into sub-problems that can be solved concurrently

Why not use traditional CPUs?

-> Performance and/or energy

6

Pipelining

• Example: adding floating-point numbers

• Possible steps:

– determine largest exponent

– normalize significand of the smaller exponent to the larger

– add significand

– re-normalize the significand and exponent of the result

• Multiple steps each taking 1 tick implies 4 ticks per addition (FLOP)

8

Codekaizen, IEEE 754 Single Floating Point Format, CC BY 3.0

https://commons.wikimedia.org/wiki/User:Codekaizen
https://commons.wikimedia.org/wiki/File:IEEE_754_Single_Floating_Point_Format.svg
https://creativecommons.org/licenses/by/3.0/legalcode

Operation Pipelining

• First instruction takes four cycles

to appear (startup latency)

• Asymptotically achieves one

result per cycle

• Steps in the pipeline are running

in parallel

• Requires same operation

consecutively on independent

data items

• Not all operations are pipelined

9

en:User:Cburnett, Pipeline, 4-stage, CC BY-SA 3.0

operation latency repeat

+ - × 3-5 1

/ 16 5

sqrt 21 7
Agner Fog (2018). Instruction Tables (Intel Skylake)

https://en.wikipedia.org/wiki/User:Cburnett
https://commons.wikimedia.org/wiki/File:Pipeline,_4_stage.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://www.agner.org/optimize/instruction_tables.pdf

Instruction Pipelining

• Break instruction into k stages

⇒ can get ⩽ k-way parallelism

• E.g. (k = 5) stages:

– IF = Instruction Fetch

– ID = Instruction Decode

– EX = Execute

– MEM = Memory Access

– WB = Write Back

10

Inductiveload, 5 Stage Pipeline,

• Note: MEM and WB memory access may stall the pipeline

• Branch instructions are problematic: a wrong guess may flush

succeeding instructions from the pipeline

https://commons.wikimedia.org/wiki/User:Inductiveload
https://commons.wikimedia.org/wiki/File:5_Stage_Pipeline.svg

Pipelining: Dependent Instructions

• Principle: CPU must ensure result is the same as if no pipelining /

parallelism

• Instructions requiring only 1 cycle in EX stage:
add %1, -1, %1 ! r1 = r1 - 1

cmp %1, 0 ! is r1 = 0?

Can be solved by pipeline feedback from EX stage to next cycle

(Important) instructions requiring c cycles for execution are normally

implemented by having c EX stages. The delays any dependent instruction

by c cycles e.g. (c = 3):

fmuld %f0 , %f2 , %f4 ! I0: fr4 = fr0 fr2 (f.p.)

... ! I1:

... ! I2:

faddd %f4 , %f6 , %f6 ! I3: fr6 = fr4 + fr6 (f.p.)

11

Superscalar (Multiple Instruction Issue)

• Up to w instructions are scheduled by the H/W to execute together

• groups must have an appropriate ‘instruction mix’ e.g. UltraSPARC

(w = 4):

– ⩽ 2 different floating point

– ⩽ 1 load / store ; ⩽ 1 branch

– ⩽ 2 integer / logical

• have ⩽ w-way ||ism over different types of instruction types

• generally requires:

– multiple (⩾ w) instruction fetches

– an extra grouping (G) stage in the pipeline

• amplifies dependencies and other problems of pipelining by w

• the instruction mix must be balanced for maximum performance

– i.e. floating point ×, + must be balanced

12

Instruction Level Parallelism

• pipelining and superscalar, offer ⩽ kw-way ||ism

• branch prediction alleviates issue of conditional branches

– record the result of recently-taken branches in a table

• out-of-order execution: alleviates the issue of dependencies

– pulls fetched instructions into a buffer of size W, W ⩾ w

– execute them in any order provided dependencies are not violated

– must keep track of all ‘in-flight’ instructions and associated registers

(O(W2) area and power!)

• in most situations, the compiler can do as good a job as a human at

exposing this parallelism (ILP was part of the ‘Free Lunch’)

13

SIMD (Vector Instructions)

• Data parallelism: apply the same operation

to multiple data items at the same time

• More efficient: single instruction fetch and

decode for all data items

• Vectorization is key to making full use of

integer / FP capabilities:

– Intel Core i7-8850H AVX-2 (256-bit)

e.g. 8x32-bit operands

– Intel KNL: AVX-512 (512-bit)

e.g. 16x32-bit operands

14

Vadikus, SIMD2, CC BY-SA 4.0

https://commons.wikimedia.org/wiki/User:Vadikus
https://commons.wikimedia.org/wiki/File:SIMD2.svg
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Barriers to Sequential Speedup

• Clock frequency:

– Dennard scaling 0.7× dimension / 0.5× area

⇒ 0.7× delay / 1.4× frequency

⇒ 0.7× voltage / 0.5× power

– … until 2006: cannot reduce voltage further due to leakage current

• Power wall: energy dissipation limited by physical constraints

• Memory wall: transfer speed and number of channels also limited by

power

• ILP wall: diminishing returns on parallelism due to risks of

speculative execution

15

Multicore

• processors interact by modifying data objects stored in a shared

address space

• simplest solution is a flat or uniform memory access (UMA)

• scalability of memory bandwidth and processor-processor

communications (arising from cache line transfers) are problems

• so is synchronizing access to shared data objects

• Cache coherency & energy

16

Non-Uniform Memory Access (NUMA)

• Machine includes some hierarchy in its memory structure

• all memory is visible to the programmer (single address space), but

some memory takes longer to access than others

• in a sense, cache introduces one level of NUMA

• between sockets in a multi-socket Xeon system

17

intel.com

Many-Core: Intel Xeon Phi

18

• Knights Landing (14nm):

– 64–72 simplified x86 cores

– 4 hardware threads per core

– 1.3–1.5 GHz

– 512-bit SIMD registers

– 2.6–3.4 TFLOP/s

– 16GB 3D-stacked MCDRAM @ 400GB/s

– Self-boot card (PCIe or Omni-Path), or as co-processor (PCIe)

• Knights Hill (10nm) – cancelled

• Knights Mill (14nm) = Knights Landing for deep learning

Many-Core: Sunway SW26010

19

• Non-cache-coherent chip:

– Sunway 64-bit RISC instruction set, 1.45 GHz

– 260 cores: 4 core groups (Management Processing

Element + Compute Processing Element with 64 cores)

– 256-bit SIMD registers

– 8GB DDR3 RAM @ 136GB/s

– 3 TFLOP/s

– Sunway TaihuLight: 6 GFLOPS/W

Jack Dongarra (2016). Report on the Sunway TaihuLight System

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

GPU

• Single Instruction, Multiple Thread (SIMT)

– thread groups, divergence

• High-bandwidth, high-latency memory

⇒ many threads & register sets

• Multiple memory types:

– Register, Local, Shared, Global, Constant

• Often limited by host-device transfer

• Nvidia Tesla P100

– 56 cores, 3584 hardware threads

– 1.3 GHz

– 4.7 TFLOP/s

– 16 GB stacked HBM2 @ 732 GB/s

– TSUBAME 3.0: 13.7 GFLOPs/W

20

Field-Programmable Gate Array (FPGA)

• Reconfigurable hardware e.g. Stratix 10

• Types of functional units

– LUTs, flip-flops

– Logic elements

– Memory blocks

– Hard blocks: FP, transceivers, IO

• Long work pipeline is key

• Compile path:

– OpenCL

– Verilog/VHDL

– Gate-level description

– Layout

• Specialized microprocessors (ASIC, DSP)

21

http://www.fpga-site.com/faq.html

http://www.fpga-site.com/faq.html

