
Synchronization in OpenCL

Slides taken from Hands On OpenCL by Simon McIntosh-Smith, Tom Deakin, James Price, Tim Mattson and Benedict Gaster under the
"attribution CC BY" creative commons license.

https://handsonopencl.github.io/

Consider N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:
– 128x128 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are brought to
a known point in their execution. The most common example is a barrier … i.e. all
units of execution “in scope” arrive at the barrier before any are allowed to
proceed.

1024

10
24

Synchronization between work-
items possible only within

work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

2

Simple parallel reduction

• A reduction can be carried out in three steps:
1. Each work-item sums its private values into a local array indexed by

the work-item’s local id

2. When all the work-items have finished, one work-item sums the
local array into an element of a global array (indexed by work-
group id).

3. When all work-groups have finished the kernel execution, the
global array is summed on the host.

• Note: this is a simple reduction that is straightforward to
implement. More efficient reductions do the work-group
partial reductions in parallel on the device rather than on the
host. These more scalable reductions are considerably more
complicated to implement.

4

Work-Item Synchronization

• Within a work-group:

void barrier()

– Takes optional flags
CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-items in its
work-group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be uniform,
i.e. taken by either:
• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Between different work-groups:
– No guarantees as to where and when a particular work-group will be executed

relative to other work-groups
– Cannot exchange data, or have barrier-like synchronization between two

different work-groups! (Critical issue!)
– Only solution: finish executing the kernel and start executing another

Ensure correct order of memory operations to local or
global memory (with flushes or queuing a memory
fence)

5

Tree Reduction

• Perform multiple rounds of binary reduction
on local memory

• Mask or exclude
threads at each
round of reduction

• Still need to reduce
across work-group
results in global
memory

6
https://devblogs.nvidia.com/faster-parallel-reductions-kepler/

https://devblogs.nvidia.com/faster-parallel-reductions-kepler/

A simple program that uses a reduction

Numerical Integration

Mathematically, we know that we
can approximate the integral as a
sum of rectangles.

Each rectangle has width and height
at the middle of interval.

4.0

2.0

1.0
X

0.0

7

Numerical integration source code
The serial Pi program

static long num_steps = 100000;

double step;

void main() {

int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i = 0; i < num_steps; i++) {

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

8

Looking for Inspiration?

• NVIDIA’s OpenCL SDK site includes multiple
different implementations of parallel
reduction, with varying levels of optimization
for GPU: https://developer.nvidia.com/opencl

9

https://developer.nvidia.com/opencl

