
Reducing

Dr Eric McCreath

Research School of Computer Science

The Australian National University

2

Introduction
The "map" operation on a GPU is straight forward, just use a lot of
threads to work in parallel on different parts of the data. However
with the "reduce" operation you need to be a bit more strategic to
optimise for performance.

When dealing with millions of elements that need to be reduced if
you end up using a serial approach it can easily dominate
performance. As such you need to think how the reduction can be
done in parallel.

If the reduction operator is associative, like addition with
(a+b)+c=a+(b+c), then you will generally have the option of doing
a tree based reduction.

Note that with floating point calculations changing the order can
slightly change the final result due to the way rounding occurs.
This can throw off your testing but generally will not effect
correctness.

3

Tree Based Reduction
The basic approach is to get teams of threads within a block to
reduce down to a single value. This can be done in shared
memory and the results stored in global memory. Once done other
kernels can be launched to further reduce the result. So a basic
approach to sum a list of integers in blocks with 1024 threads is:
__global__ void reduceV1(int *list, int n, int *res) {
 __shared__ int tmp[1024];
 int i = threadIdx.x;
 tmp[i] = list[blockIdx.x*blockDim.x + threadIdx.x];
 __syncthreads();

 for(int s = 1; s < 1024; s <<= 1) {
 if (i % (s<<1) == 0 && (i+s) < 1024) tmp[i] = tmp[i] + tmp[i+s];
 __syncthreads();
 }

 if (i == 0) res[blockIdx.x] = tmp[0];
}

4

Tree based reduction
Diagrammaticly the approach is:

Global memory

Shared

5

Tree Based Reduction
The previous approach is good although the below may be just a
little better in terms of divergence.
__global__ void reduceV2(int *list, int n, int *res) {
 __shared__ int tmp[1024];
 int i = threadIdx.x;
 tmp[i] = list[blockIdx.x*blockDim.x + threadIdx.x];
 __syncthreads();

 for(int s = (1024>>1); s > 0; s >>= 1) {
 if (i < s && i+s < 1024) tmp[i] = tmp[i] + tmp[i+s];
 __syncthreads();
 }

 if (i == 0) res[blockIdx.x] = tmp[0];
}

6

Tree based reduction
Diagrammaticly the approach is:

Global memory

Shared

7

Prefix Sum or Scan Operator

If we have a variable sized output we need to work out a way of
concurrently returning the result without threads writing to the
same location, and also without having to use a large amount of
memory and then have to filter results on the CPU.

We can use the atomicAdd or atomicInc, although if we are
returning a lot of result they will serialize this process.

The operator to use is a parallel prefix sum or scan. These work in
similar way to the tree based reductions and they can be work
efficient.

Hello " " World

0 5 1 50 0 0 0 0 0 0 0
prefix sum

Hello World0 0 0 5 5 5 5 5 6 6 6 11

8

References
Timcheck, Stephen W., "Efficient Implementation of Reductions

on GPU Architectures" (2017). Honors Research Projects. .
http://ideaexchange.uakron.edu/honors_research_projects/479

