
Streaming

Dr Eric McCreath

Research School of Computer Science

The Australian National University

2

Introduction
The GPU is often described as a "streaming" processor. As it is
designed to stream a large amount of data, particularly graphics
data. Key characteristics of streaming is overlapping transfers
with computation and also reusing buffers such that the total
amount of data processed can be considerably greater than the
amount that can be stored. If our problem is data parallel we can
break up the computation overlap computation and transfers and
improve overall performance.

Host to Device

Computation

Device to Host

Without Streaming With Streaming

3

Streams
Cuda provides streams which enables us to asynchronously
launch kernels and asynchronously start host/device transfers. If
a stream is not specified the executions get added to the default
stream and thus serializing all this activity. To create a stream
you:
cudaStream_t stream;
cudaStreamCreate(&stream);

Once this is done you can start a transfer on this stream you use:
cudaMemcpyAsync(data_d, data_h, size, cudaMemcpyHostToDevice, stream);

Then to launch a kernel on this stream you:
kernel<<<grid,blocks,0,stream>>>();

The stream acts like a queue so as items are added they are done
in that order, however, computation/transfers can overlap with
items on different streams.

4

Streams
Note also you have queues for:

host to device transfers

a compute queue, and

device to host queue.

So the order in which you make the kernel launch and async
transfers will also be maintained.

5

Breaking up into streams
A simple approach for breaking up your code into streams is to
have a different stream for every section. And then use that
stream for the: transfer to the host, kernel launch, and the transfer
back.
cudaStream_t streams[PARTS];

for (int i = 0; i<PARTS; i++) cudaStreamCreate(&streams[i]);

for (int i = 0; i<PARTS; i++) {
 int off = i * sectionSize;
 cudaMemcpyAsync(&data_d[off], &data_h[off], datasize,
 cudaMemcpyHostToDevice, streams[i]);
 kernel<<<grid,block,0,stream[i]>>>(data_d, off, sectionSize);
 cudaMemcpyAsync(&data_h[off], &data_d[off], datasize,
 cudaMemcpyDeviceToHost, streams[i]);
}
cudaDeviceSynchronize(); // wait for all streams to finish

If we wish to wait for a particular stream to finish you can:
cudaStreamSynchronize(streams[2]);

6

Streaming - reusing streams and buffers

To properly coordinate the reuse of buffers requires some careful
programing. One approach for doing this is create a fixed number
of buffers and a fix number of streams and use "modulo" to rotate
between their use. So on the device we would typically have
some buffers for input and some for output:
#define NUMBUF 3
int *buffer_in_d[NUMBUF];
int *buffer_out_d[NUMBUF];
cudaStream_t streams[NUMBUF];
for (int i=0;i<NUMBUF;i++) cudaStreamCreate(&streams[i]);

int pos = 0;

while (there_is_still_data_to_process) {
 cudaMemcpyAsync(data_in_d[pos], host_data_location, datasize,
 cudaMemcpyHostToDevice, streams[pos]);
 kernel<<<grid,block,0,streams[pos]>>>(data_in_d[pos], data_out_d[pos]);
 cudaMemcpyAsync(host_result_location, data_out_d[pos], datasize,
 cudaMemcpyDeviceToHost, streams[pos]);
 pos = (pos+1) % NUMBUF;
}

7

References
GPU Pro Tip: CUDA 7 Streams Simplify Concurrency, Mark

Harris,

https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

CUDA C/C++ Streams and Concurrency, Steve Rennich,

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

