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COMP1130: Lambda Calculus - Worksheet 2

� Combinators

For the following expressions, identify which are combinators. (Recall that a combinator is a
lambda expression with no free variables.)

1. λx.x

Solution. The only variable is x which is bound. Therefore, this is a combinator.

2. λx.λy.y

Solution. All variables are bound. Therefore, this is a combinator.

3. λx.xy

Solution. The variable y is free. Therefore, this is not a combinator.

4. λy.λx.yx(λz.a)y

Solution. The variable a is free. Therefore, this is not a combinator.

� Free Variables and Alpha Equivalence

For the following expressions, identify which variables are bound, and which are free. Afterwards,
rewrite each expression using alpha conversion where necessary, such that no variable is bound
by a λ more than once.

1. x

Solution. x is free, as FV(x) = {x}.

2. λx.x

Solution. No free variables, the x is bound to the λx..

3. λy.x

Solution. x is free, as the λy. does not bound x.

4. λx.xy

Solution. x is bound, y is free.

5. λx.λx.x

Solution. x is bound to the inner most λx. We can alpha convert to λy.λx.x.

6. x(λx.λx.x)

Solution. The outer x is free, and the inner x is bound to the inner most λx.. We can
alpha convert to x(λz.λy.y).

7. (λx.x)(λx.x)

Solution. No free variables. We could alpha convert to (λy.y)(λx.x) if desired.

8. λx.xλx.x

Solution. No free variables. The inner x is bound to the inner λx., and the outer x to the
other λx. We could alpha convert to λy.yλx.x.

9. zλx.λy.λz.λx.xyzx

Solution. The z on the outside is free, and all the innermost variables are bound. We could
alpha convert to zλa.λb.λc.λd.dbcd

1



10. y(λx.λz.xz)z

Solution. The outermost y and z are free. The x and z in the middle are bound. We could
alpha convert to y(λx.λw.xw)z.

11. λx.λy.yz(λx.x)x

Solution. z is free. We could alpha convert to λx.λy.yz(λw.w)x

� Substitution

Apply the following substitutions. If alpha converting is required for the substitution, indicate
as such.

1. x[x := y]

Solution. y

2. x[x := λz.z]

Solution. λz.z

3. λx.x[x := y]

Solution. Here, x is bound, so by alpha converting to λz.z[x := y], there is no x to replace,
so we just get λz.z or equivalentally λx.x.

4. y(λy.y)[y := λz.zx]

Solution. Alpha convert to y(λw.w)[y := λz.zx], and then substitute afterwards to get
(λz.zx)(λw.w). Note that λz.zx(λw.w) would be incorrect.

5. x(λx.y)[y := z]

Solution. x(λx.z)

6. (λx.xyx)[y := λx.xx]

Solution. Alpha convert to (λz.zyz)[y := λx.xx] to get λz.z(λx.xx)z. Again, note the
brackets, and that λz.zλx.xxz = λz.zλx.(xxz) is different.

7. (λx.x(λy.z)x)[x := λz.λy.z]

Solution. Here, x is bound, so by alpha converting to (λw.w(λy.z)w)[x := λz.λy.z], there
is no x to replace, so we just get λw.w(λy.z)w.

8. λx.λy.z[y := zx]

Solution. There is no y variable to replace, so nothing happens. We get λx.λy.z.

9. (λx.λy.w(λy.zwy))[z := λx.λy.w(λy.zwy)]

Solution. Alpha convert to (λa.λb.w(λc.zwc))[z := λx.λy.w(λy.zwy)], and replace z to
obtain

λa.λb.w(λc.(λx.λy.w(λy.zwy))wc)

� Beta Reduction

Perform a single beta reduction on the following expressions. Make it explicit where you’ve had
to perform an alpha conversion, if required.

For example,

(λx.xx)x =
α

(λy.yy)x→
β
xx

1. (λx.x)y

Solution. (λx.x)y →
β
y

2. (λx.x)x

Solution. (λx.x)x =
α

(λy.y)x→
β
x
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3. (λx.λy.xy)xy

Solution. (λx.λy.xy)xy =
α

(λa.λy.ay)xy →
β

(λy.xy)y

4. (λx.yx)(λx.x)

Solution. (λx.yx)(λx.x) =
α

(λz.yz)(λx.x) →
β
y(λx.x)

5. (λx.xx)(λx.xx)

Solution. (λx.xx)(λx.xx) =
α

(λy.yy)(λx.xx) →
β

(λx.xx)(λx.xx) Note that this expres-

sion doesn’t change under a beta reduction, and attempting to fully beta reduce will not
terminate.

� Encoding Booleans

Recall from lectures that
true := λx.λy.x

false := λx.λy.y

if . . . then . . . else . . . := λx.λy.λz.xyz

For the following questions in this section, try to make your answers as simple as possible,
reducing if required.

1. Find a lambda expression for logical and.
Verify that and true false →

β
false

(Hint: First try to find an expression for and using if).

Solution. We can encode logical and of two statements p and q as

and p q = if p then q else false

as the only case it evaluates to true is when both p and q are true. We can then abstract
the p and q over,

and = λp.λq.if p then q else false

and then insert the definition of if..then..else and false to obtain a pure lambda
calculus expression, without any other built up definitions.

and = λp.λq.pq(λx.λy.y)

Now, to verify and true false →
β

false

and true false =(λp.λq.pq(λx.λy.y))(λx.λy.x)(λx.λy.y)

→
β

(λq.(λx.λy.x)q(λx.λy.y))(λx.λy.y)

→
β

(λx.λy.x)(λx.λy.y)(λx.λy.y)

→
β

(λy.(λx.λy.y))(λx.λy.y)

→
β

(λx.λy.y) = false

2. Find a lambda expression for logical or.
Verify that or false true →

β
true.

Solution.
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We can encode logical or of two statements p and q as

or p q = if p then true else q

as the only case it evaluates to false is when both p and q are false. We can then abstract
the p and q over,

or = λp.λq.if p then true else q

and then insert the definition of if..then..else and false to obtain a pure lambda
calculus expression, without any other built up definitions.

or = λp.λq.p(λx.λy.x)q

Now, to verify that or false true →
β
true.

or false true = (λp.λq.p(λx.λy.x)q)(λx.λy.y)(λx.λy.x)

→
β

(λq.(λx.λy.y)(λx.λy.x)q)(λx.λy.x)

→
β

(λx.λy.y)(λx.λy.x)(λx.λy.x)

→
β

(λy.y)(λx.λy.x)

→
β

(λx.λy.x) = true

3. Find a lambda expression for logical not.
Verify that not (not x) →

β
x for all booleans x.

(Hint: It may help to evaluate not (not x) for a generic variable x, and then substitute
true and false afterwards.)

Solution.

We can encode logical not of a statement p

not p = if p then false else true

We can then abstract the p over,

not = λp.if p then false else true

and then insert the definition of if..then..else, false and true to obtain a pure lambda
calculus expression, without any other built up definitions.

not = λp.p(λx.λy.y)(λx.λy.x)

Now, to verify that not (not x) →
β
x.

not (not x) = (λp.p(λx.λy.y)(λx.λy.x)) ((λp.p(λx.λy.y)(λx.λy.x))x)

→
β

(λp.p(λx.λy.y)(λx.λy.x))(x(λx.λy.y)(λx.λy.x))

→
β

(x(λx.λy.y)(λx.λy.x))(λx.λy.y)(λx.λy.x))

= x(λx.λy.y)(λx.λy.x)(λx.λy.y)(λx.λy.x))
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Now, suppose that x is true.

→
β

(λx.λy.x)(λx.λy.y)(λx.λy.x)(λx.λy.y)(λx.λy.x)

→
β

(λy.(λx.λy.y))(λx.λy.x)(λx.λy.y)(λx.λy.x))

→
β

(λx.λy.y)(λx.λy.y)(λx.λy.x)

→
β

(λy.y)(λx.λy.x)

→
β

(λx.λy.x)

= true

For the other case, we note the properties

true x y = x

false x y = y

and use that and left associativity to evaluate directly.

not (not false)

→
β
false false true false true

= (false false true) false true

→
β
true false true

→
β
false

4. Find a lambda expression for logical xor.
(Hint: Use your previously defined logical operators to help you.)

Solution. There are many ways to do this, the shortest I could come up with was that
using the value of p to conditionally negate q. xor requires that precisely one of the inputs
are true, so if p is true, we verify if q is false, and if p is false, we verify if q is true. Hence,
the following will work.

xor p q = if p then (not q) else q

Substituting the definition of not, and abstracting over the p and q gives

xor = λp.λq.p ( (λp.p(λx.λy.x)(λx.λy.y)) q) q

which, when simplified via beta reduction, gives

xor = λp.λq.p(q(λx.λy.x)(λx.λy.y))q
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