
0/10 Questions Answered

Practice Mid-Semester Exam 2

Q1 Instructions
0 Points

You must acknowledge the following integrity pledge before

proceeding. Check the boxes and enter your personal details.

Read and check off the following instructions:

1. You will need to be able to upload code files to this browser from

your Haskell workspace. You must also make sure all code you

upload compiles without errors.

2. This examination is timed.

3. Permitted materials. This is an open book exam. You might in

particular find the course website, the Prelude documentation,

and the Data.List documentation useful.

Save Answer

Q2 Programming
2 Points

Von Neumann architecture allows

Save Answer

Q3 Problem classes
2 Points

Given a matrix

the inverse of the matrix exists, iff is not zero. Classify the

problem of finding the existence of an inverse of into one of the

four classes of problems:

Save Answer

Q4 Sets
2 Points

If enumerate all elements of a set produced by

Save Answer

Q5 Basic types
2 Points

What is the type of the following value ([False, True], ['0', '1'])

Save Answer

Q6 Function currying
2 Points

The function mod' is defined as

mod' :: Int -> Int -> Int
mod' x y = x `mod` y

Which of the following function calls is incorrect?

Save Answer

Q7 Control structures
2 Points

A function safetail :: [a] -> [a] return a tail of a list and

maps the empty list to itself.

Select all implementation that fits this function definition.

Save Answer

Q8 List comprehensions
2 Points

The scalar product of two lists of integers and of length is

given by the sum of products of corresponding integers

which of the following functions with type signature

scalarProduct :: [Double] -> [Double] -> Double

implements the scalar product:

A.

scalarProduct l1 l2 = sum [x * y | (x, y) <- zip l1 l2]

B.

scalarProduct [] _ = 0
scalarProduct _ [] = 0
scalarProduct (x:xs) (y:ys) = x*y + scalarProduct xs ys

C.

scalarProduct l1 l2 = sum [x * y | x <- l1, y <- l2]

D.

scalarProduct xs ys = if null xs || null ys
 then
 0
 else
 (head xs) * (head ys) + scalarProduct (tail xs) (tail ys)

Save Answer

Q9
2 Points

Upload a Haskell script that completes the following template

(instructions included) for the function sumdown .

Cut and paste this template into a working file Sumdown.hs for you

to edit and test using ghci before uploading:

module Sumdown where

-- | Returns the sum of the non-negative integers
-- from a given value down to zero.
--
-- No type signature for sumDown has been provided;
-- you must work this out for yourself.
--
-- Examples:
--
-- >>> sumdown 3
-- 6
sumdown = undefined // TODO

Please select file(s) Select file(s)

Save Answer

Q10
2 Points

Upload a Haskell script that completes the following template

(instructions included) for the function selectElem .

Cut and paste this template into a working file SelectElem.hs for

you to edit and test using ghci before uploading:

module Selectelem where

-- | Return a list of elements of the input argument whose length is
-- equal to the number of occurrences of the input argument in the
-- input list.
--
-- No type signature for selectElem has been provided;
-- you must work this out for yourself.
--
-- Examples:
--
-- >>> selectElem 3 [5,4,3,3,4,5,6]
-- [3,3]
-- >>> selectElem 'l' "Hello world!"
-- "lll"
selectElem = undefined // TODO

Please select file(s) Select file(s)

Save Answer

Save All Answers Submit & View Submission !

STUDENT NAME

Search students by name or email… "

I am committed to being a person of integrity.

I pledge, as a member of the Australian National University

community, to abide by and uphold the standards of

academic integrity outlined in the ANU statement on

honesty and plagiarism, and I am aware of the relevant

legislation, and understand the consequences of me

breaching those rules.

I will not actively communicate in any way with anyone else

during this exam. This includes asking questions in any

online forum.

Make sure this browser window is open on the machine

where you plan to work.

If you are working on the ANU Linux VDI this browser

window should be open in Linux, not on your personal

machine.

If this browser window is not open where you plan to work

close this window now and log back into the exam in a

browser on your work machine.

Note the remaining time at the top right of this screen. Set

an alarm for yourself if you need one.

You may use any documentation you wish but all work

must be your own.

Storing program code and data in separate memory types#

Storing program code and data in the same memory#

Storing program code in the primary memory but data in the

secondary

#

Storing data in the primary memory and program code in the

secondary

#

A = [a

c

b

d
]

ad − bc

A

Functional problems#

Decision problems#

Search problems#

Optimization problems#

B = {F, T} B +
B + B

{F, F, F}, {F, F, T}, {F, T, F}, {F, T, T}, {T, F, F}, {T, F, T}, {T, T,

{1, F, F}, {2, F, T}, {3, T, F}, {4, T, T}, {5, F, F}, {6, F, T}, {7, T, F}

{1, F}, {2, F}, {3, F}, {1, T}, {2, T}, {3, T}

{1, F, F}, {1, F, T}, {1, T, F}, {1, T, T}, {2, F, F}, {2, F, T}, {2, T, F}

([Bool], String)#

(Bool, Char)#

(Bool, [Char])#

([Bool], Char)#

result = (mod' 10)#

result = mod' 10 5#

result = mod' (10, 5)#

result = (mod' 10)(5)#

safetail xs = if null xs then [] else tail xs

safetail xs | null xs = [] | otherwise = tail xs

safetail xs = if null xs then tail xs else []

safetail [] = []; safetail (_:xs) = xs

xs ys n

xs ∗
i=0

∑
n−1

i ysi

A

B

C

D

$

$

https://www.gradescope.com/courses/164829/assignments/622867/submissions/https//cs.anu.edu.au/courses/comp1100
https://hackage.haskell.org/package/base/docs/Prelude.html
https://hackage.haskell.org/package/base/docs/Data-List.html

