Mid-Semester Exam (COMP1130)

STUDENT NAME

Search students by name or email...

Q1 Acknowledgment
0 Points

Australian National University

COMP1130 Mid-Semester Exam, Semester 12021

You must acknowledge the following integrity pledge before proceeding. Please read carefully and check all the boxes.

I am committed to being a person of integrity.

I pledge, as a member of the ANU community, to abide by and uphold the standards of academic integrity outlined in the ANU statement on honesty and plagiarism, I am aware of the relevant legislation, and understand the consequences of breaching those rules.

I will not communicate in any way with anyone else during this exam. This includes asking questions in any online forum.

I acknowledge that this exam is protected by copyright and that copying or sharing any of its content will violate that copyright.

Read and check off the following instructions:

1. This examination is timed.

Note the remaining time at the top right of this screen. Set an alarm for yourself if you need one.
2. Permitted materials. This is an open book exam. You might in particular find the course Website, the Prelude documentation, and the Data.List documentation useful.

You may use any documentation you wish but all work must be your own.

Save Answer

Q2 Types

2.5 Points

Consider the following Haskell function signature:

```
foo :: String -> Int -> String
```

Select which of the following is false:
foo "a" 1 can be given a type.
O foo "a" can be given a type.
(foo "a" 1 "a" can be given a type.
foo ['a','b'] has type Int -> String.
Ofoo "abc" 2 has type String.

Save Answer

Q3 Haskell Functions

2.5 Points

Consider the following Haskell type signature:

```
myFun :: Bool -> Bool -> Bool
```

Four of the following implementations of this function behave the same.
A.

```
myFun a b = case (a,b) of
    (True, True) -> True
    (True, False) -> False
    (False, True) -> False
    (False, False) -> True
```

B.

```
myFun a b = a == b
```

C.

```
myFun a b
    | a == True && b == True = True
    | otherwise = False
```

D.

```
myFun a b = (a && b) || not (a || b)
```

E.

```
myFun False False = True
myFun a b = a && b
```

Select which one behaves differently than the others?
○ A
○ в
Oc
O D
O E

Save Answer

Q4 Type Signatures

2.5 Points

Consider the following Haskell function definition:

```
bar a b = abs a + a / b
```

Which of the following is a valid Haskell type signature for this function?

O bar : : Int -> Double -> Double
bar : : Int -> Int -> Int
O
bar :: Int -> Int -> Double
O
bar :: Double -> Double -> Double

Save Answer

Q5 Lists

2.5 Points

Which of the following statements is false in Haskell:
O A list of functions can be defined.
O [[], [], [[]], [1]] is a valid list.
O Lists can be used in recursive functions.
O Infinite lists can be constructed.
O An empty list is often used as a base case in recursion.

Save Answer

Q6 Sets and Functions

5 Points
Select which of the following are True or False:

Q6.1 Sets

1 Point
(False, 1) is an element of the set $\mathbb{B}+\mathbb{Z}$.
O True
O False

Save Answer

Q6.2
1 Point
Given $f:: A \rightarrow(B \rightarrow C), a$ an element of A, and b an element of B, then $(f(a))(b)$ is an element of C.
O True
O False

Save Answer

Q6.3 Functions

1 Point
Mathematical functions are pure.
O True
O False

Save Answer

Q6.4 Sets and Functions

1 Point
Given sets A and B, then $A \rightarrow B$ represents the set of all possible functions from A to B.

O True
O False

Save Answer

Q6.5 Sets

1 Point
The set $\mathbb{B} \times \mathbb{B}$ has 8 elements.
O True
O False

Q7 Haskell

2 Points
Select which of the following are True or False:

Q7.1 Type Safety

1 Point
Haskell is dynamically typed.
O True
O False

Save Answer

Q7.2 Lists

1 Point
A list in Haskell can only have elements of the same type.
O True
O False

```
Save Answer
```


Q8 Lists and Strings

3 Points
Consider the following Haskell function definition:

```
tail' xs = case xs of
    [] -> []
    _:ys -> ys
```

Select which of the following are True or False:

Q8.1 Strings

1 Point
A valid type signature for the expression tail' "comp1100" is [Char].

O True
O False

Save Answer

Q8.2 Lists

1 Point
tail' [] gives the same result as tail' [[]].
O True
O False

Save Answer

Q8.3 Lists

1 Point
tail' [True, False] returns False.
O True
O False

Save Answer

Q9 Lambda Expressions

2.5 Points

Consider the following lambda term:
$(\lambda x .(x x) \lambda y . y)(x \lambda y . z)$

Select which of the following terms has the same meaning, after removing as many brackets as possible:

○ $\lambda x . x x \lambda y . y(x \lambda y . z)$
○ $\lambda x .(x x) \lambda y . y x \lambda y . z$
○ $\lambda x .(x x) \lambda y . y(x \lambda y . z)$
O ($\lambda x . x x \lambda y . y)(x \lambda y . z)$
O (λx. $(x x) \lambda y . y) x \lambda y . z$

Save Answer

Q10 Beta Reduction

2.5 Points

Consider the following lambda term:
$(\lambda w \cdot \lambda x \cdot w x \lambda y \cdot w y)(\lambda z \cdot x y)$

Select which of the following is (alpha-equivalent to) the result of applying one step of beta-reduction to that term:
O λt. ($\lambda z . t u) t \lambda u$. ($\lambda z . t u) u$
○ $\lambda t .(\lambda z \cdot x y) t \lambda u .(\lambda z . x y) u$
O $(\lambda w . w(\lambda u . u y))(\lambda z . x y)$
O ($\lambda x .(\lambda u . u y) x)(\lambda z . x y)$
○ $\lambda x .(\lambda z . t u) x \lambda y .(\lambda z . t u) y$

Save Answer

Q11 Beta Reduction

2.5 Points

Consider the following lambda term:
$(\lambda u .(\lambda v . v u)(u w))((\lambda x . x y) z)$

Select which of the following is the result of reducing that term as far as possible, using non-deterministic beta-reduction:

○ $y z(u w)$
$\bigcirc y z w(y z)$
$\bigcirc y z(y z w)$
○ $z y(u w)$
○ $z y w(z y)$
○ $z y(z y w)$

Save Answer

Q12 Lambda Encodings

2.5 Points

Select which of the following is a correct term for a function that doubles a natural number?
(You may assume that all the combinators used in the definitions below are already defined. Provided the encodings are correct, it should not matter which encoding is used.)

O λx. if iszero x then x else succ succ $\mathrm{Y} \lambda f$. pred x
O λx. if iszero x then x else succ $(\operatorname{succ}(Y \lambda f$. pred $x))$
O λx. $\mathrm{Y} \lambda f$. if iszero x then x else succ succ f pred x
O λx. $\mathrm{Y} \lambda f$. if iszero x then x else succ $(\operatorname{succ}(f(\operatorname{pred} x)))$
O $Y \lambda f$. λx. if iszero x then x else succ succ f pred x
○ $Y \lambda f$. λx. if iszero x then x else succ $(\operatorname{succ}(f(\operatorname{pred} x)))$

Save Answer

Q13 Programming Questions

30 Points

The programming questions are distributed to you via gitlab.

- You can find the exam gitlab repository at https://examgitlab.cecs.anu.edu.au.
- Do not change the name of this repository, or we will not be able to mark your exam.
- You should clone your repository to your local machine to do your work.
- During the exam, tutors will be available on Piazza and Teams so that students can get help in case of technical problems.
- Once you have cloned the exam you should answer the programming questions in the given Haskell files.
- After you complete each question you should commit and push your work to gitlab. We recommend that you check if your push was successful at your repository on gitlab.

Save Answer

