
Final Exam

Cover Page

Total marks: 200
Reading period: 15 Minutes duration (no use of keyboard or selection of answers).
Writing period: 180 Minutes duration.
Permitted materials: One A4 page with notes on both sides, Unannotated paper-based dictionary. 
You may not use any devices in the exam room other than the provided lab computers.

Note that links to the documentation of the Prelude  and Data.List  libraries are provided on your 
desktop.

Questions are not of equal value.
All questions must be completed within Ed Lessons.

This is a closed examination. You may not copy this exam.



Multiple Choice

Question 1

Question 2

Consider the following expressions in Haskell:

1. "Hello" ++ "World"

2. "Hi" !! 1

3. head "Bye"

4. length "Haskell"

Which of the following statements is TRUE?

Expression 1 results in "Hello World"  (with a space).

Expression 2 returns 'H' .

Expression 3 returns "B" .

Expression 4 returns 7 .

Consider the following expressions in Haskell:

1. 5 + 3

2. 5 / 3

3. 5 :: Int

4. 5.0 * 3.0

Which of the following statements is TRUE?

All four expressions have type Int .

Expression 2 ( 5 / 3 ) will cause a compile-time type error because /  only works on 
fractional types.



Question 3

Question 4

Expression 4 has type Int  because multiplying two numbers always produces an integer.

None of the above statements are true

Here's a mysterious function in Haskell with no type signature.

mystery x y = x * length y

Which of the following is a correct type signature for mystery ?

mystery :: Int -> [a] -> Int

mystery :: [a] -> Int -> Int

mystery :: Num a => a -> [a] -> a

mystery :: [a] -> [b] -> [c]

Here's a function on lists:

f :: [Int] -> Int
f xs = case xs of
    [x]     -> x
    (x:y:_) -> x + y
    []      -> 0

Which of the following functions below is equivalent to the definition above?

g xs
  | length xs >= 2 = head xs + head (tail xs)
  | length xs >= 1 = head xs
  | otherwise      = 0



Question 5

Question 6

h xs = case xs of
    (x:_:_) -> x + head xs
    [x]     -> x
    []      -> 0

k xs
  | length xs >= 1 = head xs
  | length xs >= 2 = head xs + head (tail xs)
  | otherwise      = 0

m xs = head xs + head (tail xs)

Here is a bad implementation of the function drop   that has a mistake in it. What is the result of this 
mistake?

dropBad :: Int -> [a] -> [a]
dropBad n xs
  | n <= 0    = xs
  | null xs   = []
  | otherwise = dropBad (n - 1) xs

It will lead to an infinite recursion

It will take the tail of an empty list and crash

It will always return the input list regardless of the input given.

It will always return the empty list regardless of the input given.

Here are two functions, f1  and f2 :

f1 lst = case lst of 
  [] -> []



Question 7

  (x:xs)
    | x > 0     -> (x * x) : f1 xs
    | otherwise -> f1 xs

f2 xs = map (\x -> x * x) (filter (>0) xs)

Which of the following statements is TRUE?

f1  and f2  always give the same result for all inputs.

f2  has a more general type than f1

They differ on singleton lists.

They can return lists of different lengths

Consider the following binary tree:

List all characters which are the roots of trees in this picture that are not correctly defined binary 
search trees.

'B' , 'C' , 'F' , 'H' , 'J' , 'L' , 'M'

'C' , 'H' , 'L' , 'M'

'C' , 'M'



Question 8

Question 9

'H' , 'L' , 'M'

'M'  only

Suppose we take an empty stack of Int s, and apply the following operations, in order from top to 
bottom:

push 1

push 2

push 3

pop

push 4

pop

What is at the top (the next value to be popped) of the resulting stack?

1

2

3

4

No answer is correct, because pop  is a partial function, and will throw an error in this 
sequence.

A 'binary' representation of natural numbers in Haskell might be defined using lists of 'bits' (zeros and 
ones) as follows:

data Bit = Zero | One

type BinaryNumber = [Bit]

The intended meaning of the first element of such a list is the number of ones; of the second element 



Question 10

is the number of twos; the third element is the number of fours; then eights; then sixteens; and so on.

e.g. [One,Zero,Zero,One,One]  is understood as (1*1)+(0*2)+(0*4)+(1*8)+(1*16) = 25  .

What is the worst case time complexity of the following function, which doubles (multiplies by two) a 
binary number? Here n  should be understood to be the length of the input list.

double :: BinaryNumber -> BinaryNumber
double x = Zero : x

O(1)

(O log n)

O(n)

O(n log n)

O(n²)

Consider the following function, which has type BinaryNumber -> BinaryNumber  and computes the 
successor (adds one to) a binary number.

  succ x = case x of
    []        -> [One]
    Zero : xs -> One : xs
    One : xs  -> Zero : succ xs

Describe the situation in which this function will exhibit its best case time complexity, with respect 
to 'big O' analysis.

The input list contains no elements

The input list has Zero  as its leftmost element

The input list has Zero  as its rightmost element



Question 11

Question 12

The input list has One  as its leftmost element

The input list has One  as its rightmost element

What is the worst case time complexity of the succ  function defined above? n  should again be 
understood to be the length of the input list.

O(1)

O(log n)

O(n)

O(n log n)

O (n²)

Consider the following function, which has type Int -> BinaryNumber  and maps integers to their 
binary representation.

  toEnum x
    | x <= 0    = []
    | even x    = Zero : toEnum (div x 2)
    | otherwise = One : toEnum (div x 2)

What is the worst case time complexity of this function? Here n  should be understood to be the 
input itself. You may assume that the guards x <= 0  and even x  are computed in O(1) time.

O(1)

O(log n)

O(n)



O(n log n)

O (n²)



Programming Q1: Sum of Squares

Implement a function sumSquares :: Int -> Int -> Int  that takes two integers and returns the 
sum of their squares.

Example:

sumSquares 3 4 -- returns 25
sumSquares 0 5 -- returns 25



Programming Q2: Traffic Lights

Define a data type TrafficLight  with constructors Red , Yellow , and Green . Then write a function 
nextLight :: TrafficLight -> TrafficLight  that returns the next traffic light in the (Australian) 
sequence: Red → Green → Yellow → Red.

Example:

nextLight Red    -- returns Green
nextLight Yellow -- returns Red



Programming Q3: Digit Sum

Write a recursive function digitSum :: Int -> Int  that computes the sum of the digits of a non-
negative integer. 

Example:

digitSum 123  -- returns 1 + 2 + 3 = 6
digitSum 405  -- returns 4 + 0 + 5 = 9
digitSum 0    -- returns 0

Hint:

To get the last digit of a number x , use mod x 10 , and to get the number x  without its final digit, 
use div x 10 .

Note: You will not be tested on negative inputs, and may handle them as you like.



Programming Q4: Double Evens

Write a Haskell function doubleEvens :: [Int] -> [Int]  that takes a list of integers and returns a 
new list where all the even numbers are doubled, and the odd numbers remain unchanged.

Examples:

doubleEvens [1,2,3,4]  -- returns [1,4,3,8]
doubleEvens [0,5,6]    -- returns [0,5,12]
doubleEvens []         -- returns []



Programming Q5: Product of Lengths

Write a recursive function productOfLengths :: [[a]] -> Int  that takes a list of lists and returns 
the product of the lengths of each sublist.

Example:

productOfLengths [[1,2],[3,4,5],[6]] -- returns 2*3*1 = 6
productOfLengths []                  -- returns 1



Programming Q6: Interleaving

Write a recursive function interleave :: [a] -> [a] -> [a]  that takes two lists and interleaves 
their elements,  starting with the first list, including any remaining elements from the longer list once 
the shorter list runs out.

Example:

interleave [1,3,5] [2,4,6]         -- returns [1,2,3,4,5,6]
interleave ["a","b"] ["x","y","z"] -- returns ["a","x","b","y","z"]
interleave [1,2] []                -- returns [1,2]
interleave [] [3,4]                -- returns [3,4]



Programming Q7: Custom Lists and Folds

Complete the function customFoldl :

A type of Custom Lists is provided for you. Implement fold-left on this type.

Recall that fold-left takes as inputs

a combining operation,
a starting value of an accumulator, and
a Custom List that we wish to perform recursion on;

and is defined by:

if the input list is empty, return the accumulator;
if the input list is non-empty, use the combining operation and the list head to update the 
accumulator, then continue the recursion on the list tail.

Do not use any operation on Haskell's built-in lists to write this function.



Programming Q8: Binary Trees

Complete the function atPosition :

Along with a standard definition of a type of Binary Trees, you are given a type of Position s. This is 
the type of positions in a tree at which a node might appear. Each node might be

a Root , with no parents, or
a Leaf , with no children, or
an Internal  node, with one parent and at least one child.

For example, in the picture below the node labelled 5  is the Root , the nodes with 8  and 4  are both 
Leaf s, and the node with 3  is the only Internal .

Note that in a tree with only one node, that node is both Root  and Leaf .

Given a Position  and a Binary Tree, return a list (in any order) of all values in the tree appearing in 
that Position.

Note that this code generates an import of `Data.List' is redundant  warning. You should ignore 
this warning.



Programming Q9: Rose Trees

Complete the function maxBranch :

Given a Rose Tree, return the largest number of children that any node has.



Programming Q10: Ad Hoc Polymorphic List Functions

There are two functions to complete in this file, each worth 12 marks. You do not need to have 
completed the first, to attempt the second.

1, Complete the function notAtBounds :

Given a list whose values are in both the Eq  and Bounded  typeclasses, return this list in the same 
order, but with every occurrence of minBound  or maxBound  removed.

2, Given a type in the typeclass Bounded , make lists of that type an instance of Bounded , by 
completing the function maxBound :

The maximum element of this type of lists should be the stream (infinite list) whose every member is 
maxBound .

The minimum element of this type of lists is the empty list. This definition of minBound  is provided 
for you and does not need to be edited.

Note that this code generates an Orphan instance  warning. You should ignore this warning.



Programming Q11 : Queues

Complete the function queueElem :

Given a value, and a queue of values of that type, return True  if and only if that value appears 
somewhere in the queue.

Your function must work with any instance of the Queue  type constructor.

There are two definitions provided, at the bottom of the file, of Queue  instances. These are provided 
for testing purposes only, and there is no need to edit them.


