
Basic Types
Booleans

Characters

Strings

Numeric types

Various Types

Built-in:

Bool ☛ True, False
Char ☛ 'h'
String ☛ "hello"
Int ☛ 42, -69
Double ☛ 3.14

Custom-defined:
Picture ☛ ♞

Types

A type is the programming equivalent of the mathematical notion of set

Its elements might be

• numbers

• pictures

• …

• even functions!

A function accepts inputs from a particular type and gives a result of a
particular type too.

For example, function ’+’ accepts two inputs of some numerical type, and
outputs a value of the same numerical type.

Static typing
• Helps clarify thinking and express program structure.

• Serves as a form of documentation.

• Turns run-time errors into compile-time errors.

• Every Haskell expression has a type

• Types are all checked at compile-time.

• Programs with type errors will not compile!

Haskell’s expressions are Statically Typed

Basic Types

Some basic types and constructions are available in the Prelude:

• https://hackage.haskell.org/package/base/docs/Prelude.html

• Look for the keywords ‘data’ and ‘type’

• Each comes with its own defined functions

Even more types and defined functions in the basic libraries:

• https://hackage.haskell.org/package/base

• These need to explicitly ‘imported’ if you want to use them

https://hackage.haskell.org/package/base/docs/Prelude.html
https://hackage.haskell.org/package/base

Booleans

Named after logician George Boole

The Haskell type is called Bool.

Boolean operators:

&& logical “and”

|| logical “or” (inclusive)

not logical “negation”

Bool data Bool = False | True

Boolean Operators (logical connectives)

Operator Description

&& and

|| or

not not (negation)

Truth tables

t1 t2 t1 && t2 t1 || t2 not t1

True True True True False

False True False True True

True False False True

False False False False

Boolean function definition: “exclusive or”

exOr :: Bool -> Bool -> Bool

t1 t2 exOr t1 t2

True True False

False True True

True False True

False False False

exOr x y = (x || y) && not (x && y)

Some special functions that return a Boolean

Operator Description

== equal to

/= not equal to

> greater than (and not equal to)

>= greater than or equal to

< less than (and not equal to)

<= less than or equal to

Char: character

Literal characters are written inside single quotes:

'a', …, 'z', 'A', ..., 'Z', etc.

Escape characters:

'\t' tab

'\n' newline

'\\' backslash (\)

'\'' single quote (')

'\"' double quote (")

String

Prelude> "This is a string!"

"This is a string!"

Prelude> "blue" ++ "tongue"

"bluetongue"

Prelude> head "blue"

'b'

Integer

Integer represents whole numbers (positive, zero and negative)
of any size (up to the limit of your machine’s memory).

Operation Description Example

+, *, - Add, subtract, multiply two integers 2 + 2

^ Raise an integer to the power 2^3

div Whole number division (rounded down) div 11 5

mod The remainder from whole number division mod 11 5

abs The absolute value of an integer abs (-5)

negate Change the sign of an integer negate (-5)

Int

The Int type represents integers in a fixed amount of space,

i.e. Int is bounded.

Thus Int only represents a finite range of integers and the range
is guaranteed to be at least

[−229 … 229 − 1]

However, the range can actually be bigger, depending on the compiler and your
machine. To find its lowest and greatest bounds on your machine, enter in your
GHCi prompt:

minBound :: Int

maxBound :: Int

Arithmetic operations applicable to Integer are also applicable to
Int, but will often be faster.

However, one should take care that the result stays within minBound
and maxBound limits to prevent arithmetic overflow.

Prelude> (maxBound :: Int) + 1

-9223372036854775808

Double

• Type Double can be used to represent numbers with fractional parts (i.e.,
double-precision floating-point numbers).

• However, there is a fixed amount of space allocated to representing each
value of type Double. Therefore, not all real numbers (or even rationals)
can be represented by floating-point numbers. This may result in
imprecise arithmetic results:

https://wiki.haskell.org/Performance/Floating_point

Prelude> (3.3)^2 :: Double

10.889999999999999

https://wiki.haskell.org/Performance/Floating_point

Operations applicable to Floating-point Numbers
Operation Description Example

+, *, - Add, subtract, multiply two integers 2 + 2

/ Fractional division 453.3 / 1346.6

^ Exponentiation x^n for an integer n 3.2^4

** Exponentiation x^n for a floating-point number n 3.2**4.5

sqrt Square root sqrt 2.6

abs Absolute value abs (-5.442)

negate Change the sign of a number negate (-5.882)

cos, sin, tan Cosine, sine and tangent cos 43

Floating point ⇔ Integral Conversion

fromIntegral converts from any integral type (Int
or Integer) to any other numeric type.

round, floor, ceiling convert floating point
numbers to Int or Integer.

Beware of the following

• non-numerical results

Prelude> 1 / 0
Infinity

• no automatic conversion from Integral to Double

Prelude> (floor 5.6) + 6.7
<interactive>:8:1: error:
...
Prelude> fromIntegral (floor 5.6) + 6.7
11.7

Other Numerical Types

Our course will usually use Int and Double, but other numerical
types exist in the Prelude:

• Float – like Double, but uses less space

• Rational – Rational numbers; precise unlike Double, but
significantly slower to compute with

• Word – Natural numbers; bounded in space like Int

And many more exist in the basic libraries - Complex, Natural, …

type

We can give existing types new names with the type keyword

type IdNumber = Int

This has no computational significance but can make programs more
readable.

	Slide 1: Basic Types
	Slide 2: Various Types
	Slide 3: Types
	Slide 4: Static typing
	Slide 5: Basic Types
	Slide 6: Booleans
	Slide 7: Bool
	Slide 8: Truth tables
	Slide 9: Boolean function definition: “exclusive or”
	Slide 10: Some special functions that return a Boolean
	Slide 11: Char: character
	Slide 12: String
	Slide 13: Integer
	Slide 14: Int
	Slide 15
	Slide 16: Double
	Slide 17: Operations applicable to Floating-point Numbers
	Slide 18: Floating , point if and only if Integral , Conversion
	Slide 19: Beware of the following
	Slide 20: Other Numerical Types
	Slide 21: type

