
Code Quality - Testing
Week 6 Tuesday

COMP1100/1130

Testing and Verification

How do you know whether your code is correct?

 Looking at your code.

 Testing your code.

 Formal verification (mathematical proofs).

Testing can only show the presence of bugs, not the absence
(Dijskstra).

Testing and Verification

Is it really that important to test your code? Can we instead just
wait until a user finds something wrong and fix it then?

Example: The Ariane 5 rocket - it exploded due to a software bug.

Ben-Ari, M. The Bug That Destroyed a Rocket,
http://docenti.ing.unipi.it/˜a009435/issw/extra/ariane5-benari.pdf

- Also think about everything that software controls: financial
systems, defence systems, vehicles, medical equipment, etc.!

Black Box Testing vs. White Box Testing

Black box testing
 Based on the specification.
 Doesn’t use the code (can even be designed before you write

the code).

White box testing

 Based on the code.
 Find ways to try and break the code, e.g. border cases.

Black Box Testing

Black box testing

Inputs OutputsProgram/
Function

Black Box Testing

What should we test?

Set of
integers

Zero

Positive value

Negative value

Max/min values of Int

Black Box Testing

Identify groups (equivalence classes)

 No need to check several elements in the same group.

 Inputs in the same group should behave in a similar way.

 Inputs in different groups should behave differently.

 Groups should collectively cover all possibilities.

 Pay attention to special cases, e.g. boundaries, zero.

 Check one element from each group.

Black Box Testing

Equivalence classes:

 If an input can be from a given range of values, e.g. {1… 5},
identify one valid equivalence class (correct input), e.g. 2, and
two invalid classes, e.g. 0 and 6.

 For inputs from a set of values, where each value is handled
differently, e.g. a set of choices on a screen (Delete, Create,
Copy, etc.) then make one class for each of them, and an invalid
input case.

Black Box Testing

 Strings: test a string with one char, many chars, empty string.

 Lists: test a list with one element, many elements, empty list.

 {1..10}: test 1, test 10, test a number in the middle. (Also
might be useful to test invalid inputs if they are possible).

Black Box Testing

maxThree :: Int -> Int -> Int -> Int

 The group where the first number is the greatest.

 The group where the second number is the greatest.

 The group where the third number is the greatest.

 Boundary cases: some inputs are equal.

 Also include 0 and negative inputs.

Black Box Testing

What should we test?

 An empty list.

 A list with one element.

 A list with two or more elements.

 Also: A list with duplicate elements. - This might catch errors
where the code is ignoring duplicates.

length :: [a] -> Int

White Box Testing

White box testing

 Based on the code.
 Identify points where the code makes a choice, e.g. cases,

guards, base case vs. step case in recursions.

 Watch out for otherwise and _

 Focus on inputs at boundaries and overlapping situations.

White Box Testing

maxThree :: Int -> Int -> Int -> Int
maxThree x y z
 | x > y && x > z = x
 | y > x && y > z = y
 | otherwise = z

 To make a test case to reach the 3rd choice: based on the
boundary of the 1st two cases, test e.g. 2 2 1

 Make test cases to cover each of the choices.

White Box Testing

Branch Coverage:

 The test cases should cover each of the branches at least once.
 Both the true and false cases of each branch should be covered.

maxThree :: Int -> Int -> Int -> Int
maxThree x y z
 | x > y && x > z = x
 | y > x && y > z = y
 | otherwise = z

White Box Testing

Branch Coverage:

 The test cases should cover each of the branches at least once.
 Both the true and false cases of each branch should be covered.

maxThree :: Int -> Int -> Int -> Int
maxThree x y z
 | x > y && x > z = x
 | y > x && y > z = y
 | z > x && z > y = z

Here, it is possible for all
three cases to be false.

White Box Testing

Branch Coverage:
 The test cases should cover each of the branches at least once.

mysteryFunc :: [Int] -> Int
mysteryFunc list = case list of
 [] -> 0
 _:xs -> 5 + mysteryFunc xs

The 1st choice is covered by using an empty list; the 2nd choice
with any other list. Also test a list with one element vs. a list with
a few elements (where the recursion would loop several times).

Testing

Remember that tests can’t cover all the possibilities.

The goal is to find a set of test cases that will be the most likely to
find bugs – that’s why we look at things like boundary cases.

The aim is also to find test cases that cover the largest range of
possibilities, e.g. by using equivalence classes.

Documenting Tests

How do you run the tests? Just typing inputs into ghci?

- This can be a way to start testing, but think about large or
complex programs.

- It would be difficult to remember what has already been tested.

- Also, what if your code changes? The tests have to be created
again.

 Documenting your tests is important.

Doctests

Recall Doctests from Lab 3:
-- | Compute Fibonacci numbers
-- >>> fib 10
-- 55
-- >>> fib 5
-- 5

fib :: Int -> Int

Doctests

The correct format is required:

Format: The | is essential:
-- | Compute Fibonacci numbers ✓
-- Compute Fibonacci numbers

Format: Indenting and other spacing have to be perfect:
-- 5 ✓
-- 5

Call doctest MyFileName.hs from outside ghci.

Other Types of Testing

Randomised testing
 allows you to run many tests with minimum effort

 could miss special cases

Property-based testing

 Haskell’s QuickCheck library see: online or the textbook.

 We won’t cover this in this course.

http://hackage.haskell.org/package/QuickCheck

References

Some references if you’re interested in further reading (but these
go far beyond what we’re learning here):

 The Art of Software Testing, by Myers, Sandler, Badgett &
Thomas, Wiley, 2004.

 Software Testing: A Craftsman’s Approach, by Jorgensen,
Auerbach Publishers, 2013.

	Code Quality - Testing� Week 6 Tuesday	
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

