

COMP1100: Programming as Problem Solving

Slides 2: Functions and Sets

Dr. Liam O'Connor

(based on material from Ranald Clouston, Yun Kuen Cheung, and Michael Norrish)

School of Computing, Australian National University

Semester 2 2025

Programming with Functions

Functional Programming

This course teaches a style of programming called **functional** programming.

Programming with Functions

Functional Programming

This course teaches a style of programming called **functional** programming.

Functions

Functions are mappings between **sets**.

Sets

Sets

A **set** is a collection of things, called its **elements**.

- ▶ Not in any particular order

$$\{3, 4, 8\} = \{8, 3, 4\}$$

- ▶ Each element appears only once

$$\{1, 1, 2\} = \{1, 2\}$$

Sets

Sets

A **set** is a collection of things, called its **elements**.

- ▶ Not in any particular order

$$\{3, 4, 8\} = \{8, 3, 4\}$$

- ▶ Each element appears only once

$$\{1, 1, 2\} = \{1, 2\}$$

Finite Sets

Some sets have only finitely many elements, so can be listed:

- ▶ A **singleton**, e.g. $\{3\}$ or $\{\text{True}\}$.
- ▶ The **booleans** \mathbb{B} : $\{\text{True}, \text{False}\}$

Large finite sets may not be practical to list out fully, so we use **ranges**:

- ▶ A set of **characters**: $\{\text{'A'}, \text{'B'}, \dots, \text{'Z'}\}$.
- ▶ A bigger set of numbers: $\{0, 1, 2, \dots, 100\}$.

Sets

Sets

A **set** is a collection of things, called its **elements**.

- ▶ Not in any particular order

$$\{3, 4, 8\} = \{8, 3, 4\}$$

- ▶ Each element appears only once

$$\{1, 1, 2\} = \{1, 2\}$$

Infinite Sets

- ▶ The **natural numbers** \mathbb{N} : $\{0, 1, 2, \dots\}$
- ▶ The **integers** \mathbb{Z} : $\{\dots, -1, 0, 1, 2, \dots\}$
- ▶ The **real numbers** \mathbb{R}
- ▶ The **strings**: lists of characters of any finite length.

Finite Sets

Some sets have only finitely many elements, so can be listed:

- ▶ A **singleton**, e.g. $\{3\}$ or $\{\text{True}\}$.
- ▶ The **booleans** \mathbb{B} : $\{\text{True}, \text{False}\}$

Large finite sets may not be practical to list out fully, so we use **ranges**:

- ▶ A set of **characters**: $\{\text{'A'}, \text{'B'}, \dots, \text{'Z'}\}$.
- ▶ A bigger set of numbers: $\{0, 1, 2, \dots, 100\}$.

Combining Sets: Product

Definition

Given two sets A and B , we can form a new set $A \times B$, called the **product** (or **cartesian product**), by including every **pair** (a, b) where a is an element of A and b is an element of B .

Combining Sets: Product

Definition

Given two sets A and B , we can form a new set $A \times B$, called the **product** (or **cartesian product**), by including every **pair** (a, b) where a is an element of A and b is an element of B .

Example

$\mathbb{B} \times \{\text{Red, Green, Blue}\}$ is:

$\{(\text{False, Red}), (\text{False, Green}), (\text{False, Blue}),$
 $(\text{True, Red}), (\text{True, Green}), (\text{True, Blue})\}$

Combining Sets: Product

Definition

Given two sets A and B , we can form a new set $A \times B$, called the **product** (or **cartesian product**), by including every **pair** (a, b) where a is an element of A and b is an element of B .

Example

$\mathbb{B} \times \{\text{Red, Green, Blue}\}$ is:

$\{(\text{False, Red}), (\text{False, Green}), (\text{False, Blue}),$
 $(\text{True, Red}), (\text{True, Green}), (\text{True, Blue})\}$

Products can extend to more than two sets:

$A \times B \times C \times D$

whose members have the form (a, b, c, d) .

e.g. $\mathbb{B} \times \{\text{Red, Green, Blue}\} \times \mathbb{B}$?

Combining Sets: Sum

Definition

Given two sets A and B , we can form a new set $A + B$, called the **sum**, by combining:

- ▶ Every element a of A , along with a 'tag' to remind us that it came from the left:

(a, Left)

- ▶ Every element b of B , tagged right:

(a, Right)

Combining Sets: Sum

Definition

Given two sets A and B , we can form a new set $A + B$, called the **sum**, by combining:

- ▶ Every element a of A , along with a 'tag' to remind us that it came from the left:

(a, Left)

- ▶ Every element b of B , tagged right:

(a, Right)

Example: $\mathbb{B} + \{\text{Red, Green, Blue}\}$

$\{(\text{False, Left}), (\text{True, Left}),$
 $\quad (\text{Red, Right}), (\text{Green, Right}), (\text{Blue, Right})\}$

Combining Sets: Sum

Definition

Given two sets A and B , we can form a new set $A + B$, called the **sum**, by combining:

- ▶ Every element a of A , along with a 'tag' to remind us that it came from the left:

(a, Left)

- ▶ Every element b of B , tagged right:

(a, Right)

Question

Why do we need the tags?

Example: $\mathbb{B} + \{\text{Red, Green, Blue}\}$

$\{(\text{False, Left}), (\text{True, Left}),$
 $\quad (\text{Red, Right}), (\text{Green, Right}), (\text{Blue, Right})\}$

Combining Sets: Sum

Definition

Given two sets A and B , we can form a new set $A + B$, called the **sum**, by combining:

- ▶ Every element a of A , along with a 'tag' to remind us that it came from the left:

(a, Left)

- ▶ Every element b of B , tagged right:

(a, Right)

Question

Why do we need the tags?

We want our sets to remain entirely **disjoint**. Consider $\mathbb{B} + \mathbb{B}$.

Note: $A + B$ is therefore **different** from set union $A \cup B$!

Example: $\mathbb{B} + \{\text{Red, Green, Blue}\}$

$\{(\text{False, Left}), (\text{True, Left}),$
 $\quad (\text{Red, Right}), (\text{Green, Right}), (\text{Blue, Right})\}$

Combining Sets: Sum

Definition

Given two sets A and B , we can form a new set $A + B$, called the **sum**, by combining:

- ▶ Every element a of A , along with a 'tag' to remind us that it came from the left:

(a, Left)

- ▶ Every element b of B , tagged right:

(a, Right)

Example: $\mathbb{B} + \{\text{Red, Green, Blue}\}$

$\{(\text{False, Left}), (\text{True, Left}),$
 $(\text{Red, Right}), (\text{Green, Right}), (\text{Blue, Right})\}$

Question

Why do we need the tags?

We want our sets to remain entirely **disjoint**. Consider $\mathbb{B} + \mathbb{B}$.

Note: $A + B$ is therefore **different** from set union $A \cup B$!

Sums can extend to more than two sets:

$A + B + C + D$

Although we had better pick better names for tags than Left and Right!

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).

Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).

Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).

This is the **identity** function $\mathbb{B} \rightarrow \mathbb{B}$.

Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

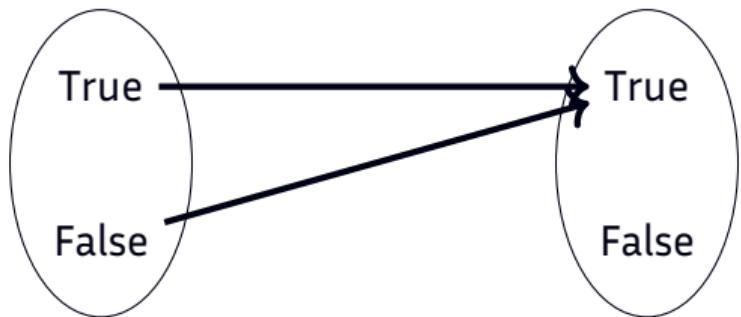
$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).



Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

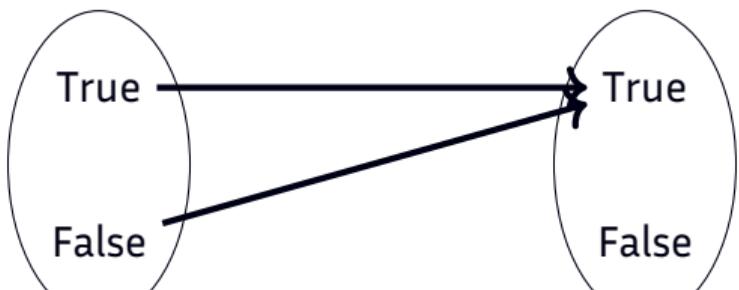
$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A, called the **domain**;
- ▶ A set B, called the **codomain (or range)**;
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).



The **constant** function returning True.

Notation

Giving such a function a name f , we write:

$f: A \rightarrow B$

If f assigns output b to input a , we write:

$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).

Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).

This is not a **total** function – it is **partial**

Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

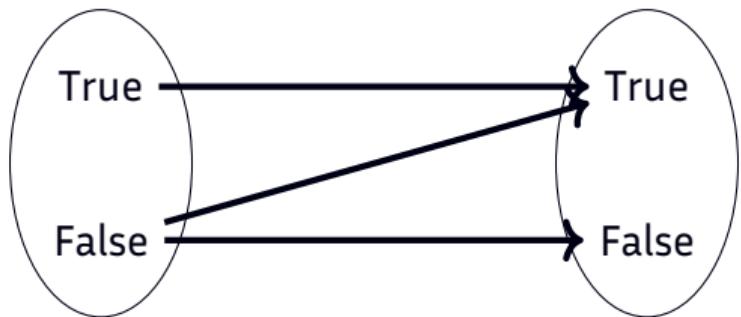
$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).



Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

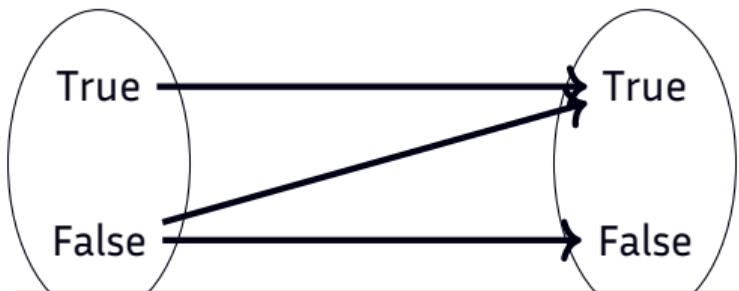
$$f(a) = b$$

Functions

Definition

A function is defined by:

- ▶ A set A , called the **domain**;
- ▶ A set B , called the **codomain** (or **range**);
- ▶ An assignment from *each* element of A (**input**) to *one* element of B (**output**).



This is **not** a function (but a relation)

Notation

Giving such a function a name f , we write:

$$f : A \rightarrow B$$

If f assigns output b to input a , we write:

$$f(a) = b$$

Defining Functions

Finite Domains

If the domain is finite, we can define a function by listing its output for each possible input.

For example, define:

$$f :: \mathbb{B} \rightarrow \mathbb{Z}$$

$$f(\text{False}) = -6$$

$$f(\text{True}) = 26$$

Defining Functions

Finite Domains

If the domain is finite, we can define a function by listing its output for each possible input.

For example, define:

$$f :: \mathbb{B} \rightarrow \mathbb{Z}$$

$$f(\text{False}) = -6$$

$$f(\text{True}) = 26$$

Infinite (or larger finite) Domains

For larger domains, we must explain how to **compute** the output for all inputs:

$$\text{minus} :: \mathbb{Z} \rightarrow \mathbb{Z}$$

$$\text{minus}(x) = -x$$

$$\text{isPos} :: \mathbb{Z} \rightarrow \mathbb{B}$$

$$\text{isPos}(y) = \begin{cases} \text{True} & \text{if } y \text{ is positive} \\ \text{False} & \text{if } y \text{ is negative} \\ \text{False} & \text{if } y = 0 \end{cases}$$

Here x and y are **variables**, which stand for any element of \mathbb{Z} .

Polymorphic Functions

Definition

A function that can be defined *simultaneously* for many different sets is called **polymorphic**.

- ▶ The **identity** function:

$$\begin{aligned} id &:: A \rightarrow A \\ id(a) &= a \end{aligned}$$

- ▶ The **constant zero** function:

$$\begin{aligned} cz &:: B \rightarrow \mathbb{Z} \\ cz(b) &= 0 \end{aligned}$$

Here A and B are variables which stand for any set – and a and b are variables which stand for arbitrary elements of those sets.

Polymorphic Functions

Definition

A function that can be defined *simultaneously* for many different sets is called **polymorphic**.

- The **identity** function:

$$id :: A \rightarrow A$$

$$id(a) = a$$

- The **constant zero** function:

$$cz :: B \rightarrow \mathbb{Z}$$

$$cz(b) = 0$$

Here A and B are variables which stand for any set – and a and b are variables which stand for arbitrary elements of those sets.

Examples

Let's define these together:

- $proj_L :: A \times B \rightarrow A$
- $proj_R :: A \times B \rightarrow B$
- $inj_L :: A \rightarrow A + B$
- $inj_R :: B \rightarrow A + B$

Polymorphic Functions

Definition

A function that can be defined *simultaneously* for many different sets is called **polymorphic**.

- The **identity** function:

$$id :: A \rightarrow A$$

$$id(a) = a$$

- The **constant zero** function:

$$cz :: B \rightarrow \mathbb{Z}$$

$$cz(b) = 0$$

Here A and B are variables which stand for any set – and a and b are variables which stand for arbitrary elements of those sets.

Bounded Polymorphism

Is this function **polymorphic**?

$$minus :: A \rightarrow A$$

$$minus(x) = -x$$

Polymorphic Functions

Definition

A function that can be defined *simultaneously* for many different sets is called **polymorphic**.

- The **identity** function:

$$\begin{aligned} id &:: A \rightarrow A \\ id(a) &= a \end{aligned}$$

- The **constant zero** function:

$$\begin{aligned} cz &:: B \rightarrow \mathbb{Z} \\ cz(b) &= 0 \end{aligned}$$

Here A and B are variables which stand for any set – and a and b are variables which stand for arbitrary elements of those sets.

Bounded Polymorphism

Is this function **polymorphic**?

$$\begin{aligned} minus &:: A \rightarrow A \\ minus(x) &= -x \end{aligned}$$

Defined for more than one set, e.g. \mathbb{Z}, \mathbb{R} , but not defined for others, e.g. \mathbb{N}, \mathbb{B} .

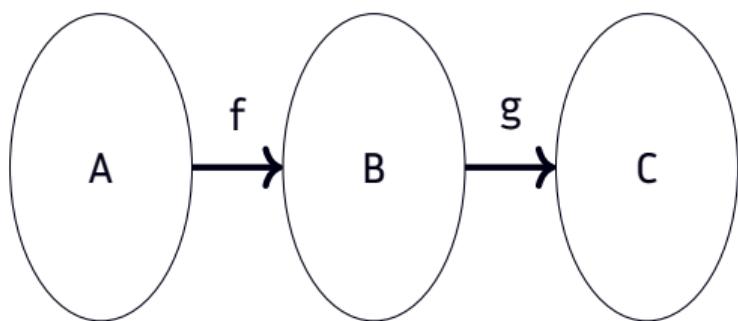
This function is polymorphic *only for sets where (-) is defined*.

Combining Functions: Composition

Definition

If we have functions $f :: A \rightarrow B$ and $g :: B \rightarrow C$, we define a new function $g \circ f :: A \rightarrow C$ by

$$(g \circ f)(a) = g(f(a))$$

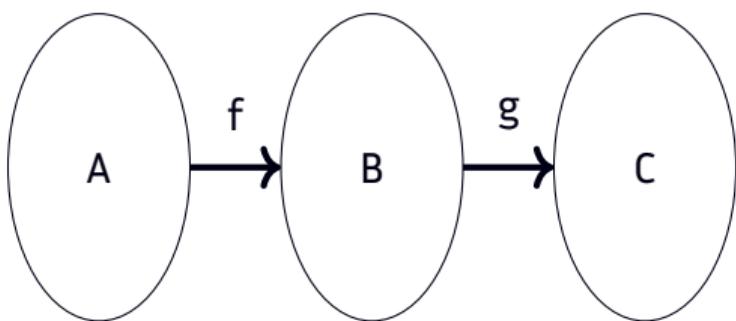


Combining Functions: Composition

Definition

If we have functions $f :: A \rightarrow B$ and $g :: B \rightarrow C$, we define a new function $g \circ f :: A \rightarrow C$ by

$$(g \circ f)(a) = g(f(a))$$



Examples

Earlier we defined $\text{minus} : \mathbb{Z} \rightarrow \mathbb{Z}$
and $\text{isPos} : \mathbb{Z} \rightarrow \mathbb{B}$.

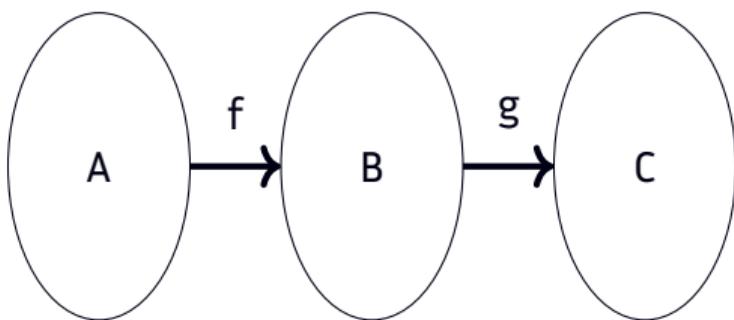
- ▶ Can we define $\text{minus} \circ \text{isPos}$ or $\text{isPos} \circ \text{minus}$?

Combining Functions: Composition

Definition

If we have functions $f :: A \rightarrow B$ and $g :: B \rightarrow C$, we define a new function $g \circ f :: A \rightarrow C$ by

$$(g \circ f)(a) = g(f(a))$$



Examples

Earlier we defined $\text{minus} : \mathbb{Z} \rightarrow \mathbb{Z}$
and $\text{isPos} : \mathbb{Z} \rightarrow \mathbb{B}$.

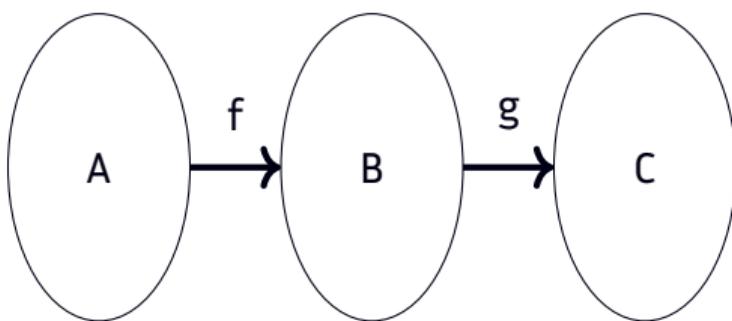
- ▶ Can we define $\text{minus} \circ \text{isPos}$ or $\text{isPos} \circ \text{minus}$?
- ▶ For the one we can define, what is the domain and codomain?

Combining Functions: Composition

Definition

If we have functions $f :: A \rightarrow B$ and $g :: B \rightarrow C$, we define a new function $g \circ f :: A \rightarrow C$ by

$$(g \circ f)(a) = g(f(a))$$



Examples

Earlier we defined $\text{minus} : \mathbb{Z} \rightarrow \mathbb{Z}$
and $\text{isPos} : \mathbb{Z} \rightarrow \mathbb{B}$.

- ▶ Can we define $\text{minus} \circ \text{isPos}$ or $\text{isPos} \circ \text{minus}$?
- ▶ For the one we can define, what is the domain and codomain?
- ▶ Can you describe in words what this combined function does?

Combining Sets: Sets of Functions

The Space of Functions

Until now we have thought of elements of sets, and functions, as different things.

But given sets A and B , we can form a new set $A \rightarrow B$ – the set of *all possible functions* from A to B .

There is **no difference** between writing:

$$f :: A \rightarrow B$$

and saying:

“ f is an element of the set $A \rightarrow B$ ”

Combining Sets: Sets of Functions

The Space of Functions

Until now we have thought of elements of sets, and functions, as different things.

But given sets A and B , we can form a new set $A \rightarrow B$ – the set of *all possible functions* from A to B .

There is **no difference** between writing:

$$f :: A \rightarrow B$$

and saying:

“ f is an element of the set $A \rightarrow B$ ”

The codomain of a function can itself consist of **functions**:

$$\begin{aligned} pair :: A &\rightarrow (B \rightarrow A \times B) \\ (pair(a))(b) &= (a, b) \end{aligned}$$

And the domain of a function can itself consist of **functions**:

$$\begin{aligned} doTwice :: (A &\rightarrow A) \rightarrow (A \rightarrow A) \\ (doTwice(f))(a) &= f(f(a)) \end{aligned}$$

Combining Sets: Sets of Functions

The Space of Functions

Until now we have thought of elements of sets, and functions, as different things.

But given sets A and B , we can form a new set $A \rightarrow B$ – the set of *all possible functions* from A to B .

There is **no difference** between writing:

$$f :: A \rightarrow B$$

and saying:

“ f is an element of the set $A \rightarrow B$ ”

The codomain of a function can itself consist of **functions**:

$$\begin{aligned} \text{pair} &:: A \rightarrow (B \rightarrow A \times B) \\ (\text{pair}(a))(b) &= (a, b) \end{aligned}$$

And the domain of a function can itself consist of **functions**:

$$\begin{aligned} \text{doTwice} &:: (A \rightarrow A) \rightarrow (A \rightarrow A) \\ (\text{doTwice}(f))(a) &= f(f(a)) \end{aligned}$$

Right-associativity

$$A \rightarrow B \rightarrow C = A \rightarrow (B \rightarrow C)$$

Which of the above brackets are unneeded?

Combining Sets: Sets of Functions

The Space of Functions

Until now we have thought of elements of sets, and functions, as different things.

But given sets A and B , we can form a new set $A \rightarrow B$ – the set of *all possible functions* from A to B .

There is **no difference** between writing:

$$f :: A \rightarrow B$$

and saying:

“ f is an element of the set $A \rightarrow B$ ”

The codomain of a function can itself consist of **functions**:

$$\begin{aligned} \text{pair} :: A \rightarrow B \rightarrow A \times B \\ (\text{pair}(a))(b) = (a, b) \end{aligned}$$

And the domain of a function can itself consist of **functions**:

$$\begin{aligned} \text{doTwice} :: (A \rightarrow A) \rightarrow A \rightarrow A \\ (\text{doTwice}(f))(a) = f(f(a)) \end{aligned}$$

Right-associativity

$$A \rightarrow B \rightarrow C = A \rightarrow (B \rightarrow C)$$

Which of the above brackets are unneeded?

From Mathematics to Programming

The Space of Functions

- ▶ Syntax differs between standard mathematics and any given programming language, e.g. $f \ x$ in Haskell instead of $f(x)$.
- ▶ Mathematicians are comfortable with infinite constructions, such as real numbers, but programmers are restricted to finite memory.
- ▶ Mathematical functions assign an output to every input — programmed functions may crash, or get stuck in a loop.
- ▶ Mathematical functions are defined entirely by their association of output to input; in programming one mathematically identical function may be better than another, e.g. it may run faster.

Haskell