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Programming with Functions

This course teaches a style of programming
called functional programming.

Functional Programming
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Programming with Functions

This course teaches a style of programming
called functional programming.

Functional Programming

Functions are mappings between sets.

Functions
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Sets

A set is a collection of things, called its elements.
▶ Not in any particular order

{3, 4, 8} = {8, 3, 4}
▶ Each element appears only once

{1, 1, 2} = {1, 2}

Sets
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Sets

A set is a collection of things, called its elements.
▶ Not in any particular order

{3, 4, 8} = {8, 3, 4}
▶ Each element appears only once

{1, 1, 2} = {1, 2}

Sets

Some sets have only finitely many elements,
so can be listed:
▶ A singleton, e.g. {3} or {True}.
▶ The booleans 𝔹: {True,False}
Large finite sets may not be practical to list
out fully, so we use ranges:
▶ A set of characters: {'A','B',… ,'Z'}.
▶ A bigger set of numbers: {0, 1, 2,… , 100}.

Finite Sets
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Sets

A set is a collection of things, called its elements.
▶ Not in any particular order

{3, 4, 8} = {8, 3, 4}
▶ Each element appears only once

{1, 1, 2} = {1, 2}

Sets

Some sets have only finitely many elements,
so can be listed:
▶ A singleton, e.g. {3} or {True}.
▶ The booleans 𝔹: {True,False}
Large finite sets may not be practical to list
out fully, so we use ranges:
▶ A set of characters: {'A','B',… ,'Z'}.
▶ A bigger set of numbers: {0, 1, 2,… , 100}.

Finite Sets

▶ The natural numbersℕ: {0, 1, 2,…}
▶ The integers ℤ: {…,−1, 0, 1, 2,…}
▶ The real numbers ℝ
▶ The strings: lists of characters of

any finite length.

Infinite Sets
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Combining Sets: Product

Given two sets A and B, we can form a new set
A×B, called the product (or cartesian product), by
including every pair (a,b) where a is an element
ofA and b is an element of B.

Definition
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Combining Sets: Product

Given two sets A and B, we can form a new set
A×B, called the product (or cartesian product), by
including every pair (a,b) where a is an element
ofA and b is an element of B.

Definition

𝔹× {Red,Green,Blue} is:

{(False,Red), (False,Green), (False,Blue),
(True,Red), (True,Green), (True,Blue)}

Example
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Combining Sets: Product

Given two sets A and B, we can form a new set
A×B, called the product (or cartesian product), by
including every pair (a,b) where a is an element
ofA and b is an element of B.

Definition

𝔹× {Red,Green,Blue} is:

{(False,Red), (False,Green), (False,Blue),
(True,Red), (True,Green), (True,Blue)}

Example

Products can extend to more than
two sets:

A×B×C×D

whose members have the form
(a,b, c, d).

e.g. 𝔹 × {Red,Green,Blue}× 𝔹?
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Combining Sets: Sum

Given two setsA andB, we can form a new setA+
B, called the sum, by combining:
▶ Every element a ofA, along with a ‘tag’ to

remind us that it came from the left:
(a,Left)

▶ Every element b of B, tagged right:
(a,Right)

Definition
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Combining Sets: Sum

Given two setsA andB, we can form a new setA+
B, called the sum, by combining:
▶ Every element a ofA, along with a ‘tag’ to

remind us that it came from the left:
(a,Left)

▶ Every element b of B, tagged right:
(a,Right)

Definition

{(False,Left), (True,Left),
(Red,Right), (Green,Right), (Blue,Right)}

Example: 𝔹 + {Red,Green,Blue}
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Combining Sets: Sum

Given two setsA andB, we can form a new setA+
B, called the sum, by combining:
▶ Every element a ofA, along with a ‘tag’ to

remind us that it came from the left:
(a,Left)

▶ Every element b of B, tagged right:
(a,Right)

Definition

{(False,Left), (True,Left),
(Red,Right), (Green,Right), (Blue,Right)}

Example: 𝔹 + {Red,Green,Blue}

Why do we need the tags?

We want our sets to remain entirely
disjoint. Consider 𝔹 + 𝔹.

Note: A + B is therefore different
from set unionA∪B!

Question
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Combining Sets: Sum

Given two setsA andB, we can form a new setA+
B, called the sum, by combining:
▶ Every element a ofA, along with a ‘tag’ to
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Combining Sets: Sum

Given two setsA andB, we can form a new setA+
B, called the sum, by combining:
▶ Every element a ofA, along with a ‘tag’ to

remind us that it came from the left:
(a,Left)

▶ Every element b of B, tagged right:
(a,Right)

Definition

{(False,Left), (True,Left),
(Red,Right), (Green,Right), (Blue,Right)}

Example: 𝔹 + {Red,Green,Blue}
Sums can extend to more than two
sets:

A +B +C +D
Although we had better pick better
names for tags than Left and Right!

Why do we need the tags?

We want our sets to remain entirely
disjoint. Consider 𝔹 + 𝔹.

Note: A + B is therefore different
from set unionA∪B!

Question
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False

Sets Functions Functional Programming



Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False

This is the identity function 𝔹 → 𝔹.
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False

The constant function returning True.
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False

This is not a total function— it is partial
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False
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Functions

A function is defined by:
▶ A setA, called the domain;
▶ A set B, called the codomain (or range);
▶ An assignment from each element ofA

(input) to one element of B (output).

Definition

Giving such a function a name f, wewrite:

f ∶∶ A→ B

If f assigns output b to input a, we write:

f(a) = b

Notation

True

False

True

False

This is not a function (but a relation)
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Defining Functions

If the domain is finite, we can define a
function by listing its output for each
possible input.

For example, define:

f ∶∶ 𝔹→ ℤ
f(False) = −6
f(True) = 26

Finite Domains
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Defining Functions

If the domain is finite, we can define a
function by listing its output for each
possible input.

For example, define:

f ∶∶ 𝔹→ ℤ
f(False) = −6
f(True) = 26

Finite Domains

For larger domains, we must explain how to
compute the output for all inputs:

minus ∶∶ ℤ→ ℤ
minus(x) = −x

isPos ∶∶ ℤ→ 𝔹

isPos(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

True if y is positive
False if y is negative
False if y = 0

Here x andy are variables, which stand for any
element of ℤ.

Infinite (or larger finite) Domains
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Polymorphic Functions

A function that canbedefined simultaneously
for many different sets is called polymorphic.
▶ The identity function:

id ∶∶ A→ A
id(a) = a

▶ The constant zero function:

cz ∶∶ B→ ℤ
cz(b) = 0

HereA andB are variableswhich stand for any
set—anda andb are variableswhich stand for
arbitrary elements of those sets.

Definition
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Polymorphic Functions

A function that canbedefined simultaneously
for many different sets is called polymorphic.
▶ The identity function:

id ∶∶ A→ A
id(a) = a

▶ The constant zero function:

cz ∶∶ B→ ℤ
cz(b) = 0

HereA andB are variableswhich stand for any
set—anda andb are variableswhich stand for
arbitrary elements of those sets.

Definition

Let’s define these together:
▶ projL ∶∶ A×B→ A
▶ projR ∶∶ A×B→ B
▶ injL ∶∶ A→ A +B
▶ injR ∶∶ B→ A +B

Examples
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Polymorphic Functions

A function that canbedefined simultaneously
for many different sets is called polymorphic.
▶ The identity function:

id ∶∶ A→ A
id(a) = a

▶ The constant zero function:

cz ∶∶ B→ ℤ
cz(b) = 0

HereA andB are variableswhich stand for any
set—anda andb are variableswhich stand for
arbitrary elements of those sets.

Definition

Is this function polymorphic?

minus ∶∶ A→ A
minus(x) = −x

Defined for more than one set, e.g.
ℤ,ℝ, but not defined for others, e.g.
ℕ,𝔹.

This function is polymorphic only
for sets where (−) is defined.

Bounded Polymorphism
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Polymorphic Functions

A function that canbedefined simultaneously
for many different sets is called polymorphic.
▶ The identity function:

id ∶∶ A→ A
id(a) = a

▶ The constant zero function:

cz ∶∶ B→ ℤ
cz(b) = 0

HereA andB are variableswhich stand for any
set—anda andb are variableswhich stand for
arbitrary elements of those sets.

Definition

Is this function polymorphic?

minus ∶∶ A→ A
minus(x) = −x

Defined for more than one set, e.g.
ℤ,ℝ, but not defined for others, e.g.
ℕ,𝔹.

This function is polymorphic only
for sets where (−) is defined.

Bounded Polymorphism
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Combining Functions: Composition

If we have functions f ∶∶ A → B and g ∶∶ B → C,
we define a new function g ○ f ∶∶ A→ C by

(g ○ f)(a) = g(f(a))

Definition

A B C
f g
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Combining Functions: Composition

If we have functions f ∶∶ A → B and g ∶∶ B → C,
we define a new function g ○ f ∶∶ A→ C by

(g ○ f)(a) = g(f(a))

Definition

A B C
f g

Earlier we defined minus ∶∶ ℤ → ℤ
and isPos ∶∶ ℤ→ 𝔹.
▶ Can we defineminus ○ isPos or

isPos ○minus?

▶ For the one we can define,
what is the domain and
codomain?

▶ Can you describe in words what
this combined function does?

Examples
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Combining Functions: Composition
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Combining Functions: Composition

If we have functions f ∶∶ A → B and g ∶∶ B → C,
we define a new function g ○ f ∶∶ A→ C by

(g ○ f)(a) = g(f(a))

Definition

A B C
f g

Earlier we defined minus ∶∶ ℤ → ℤ
and isPos ∶∶ ℤ→ 𝔹.
▶ Can we defineminus ○ isPos or

isPos ○minus?
▶ For the one we can define,

what is the domain and
codomain?

▶ Can you describe in words what
this combined function does?

Examples
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Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given setsA and B, we can form a new set
A→ B— the set of all possible functions from
A to B.
There is no difference between writing:

f ∶∶ A→ B

and saying:

“f is an element of the setA→ B”

The Space of Functions
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Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given setsA and B, we can form a new set
A→ B— the set of all possible functions from
A to B.
There is no difference between writing:

f ∶∶ A→ B

and saying:

“f is an element of the setA→ B”

The Space of Functions
The codomain of a function can it-
self consist of functions:

pair ∶∶ A→ (B→ A×B)
(pair(a))(b) = (a,b)

And the domain of a function can it-
self consist of functions:

doTwice ∶∶ (A→ A)→ (A→ A)
(doTwice(f))(a) = f(f(a))
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Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given setsA and B, we can form a new set
A→ B— the set of all possible functions from
A to B.
There is no difference between writing:

f ∶∶ A→ B

and saying:

“f is an element of the setA→ B”

The Space of Functions
The codomain of a function can it-
self consist of functions:

pair ∶∶ A→ (B→ A×B)
(pair(a))(b) = (a,b)

And the domain of a function can it-
self consist of functions:

doTwice ∶∶ (A→ A)→ (A→ A)
(doTwice(f))(a) = f(f(a))

A→ B→ C = A→ (B→ C)

Which of the above brackets are unneeded?

Right-associativity
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Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given setsA and B, we can form a new set
A→ B— the set of all possible functions from
A to B.
There is no difference between writing:

f ∶∶ A→ B

and saying:

“f is an element of the setA→ B”

The Space of Functions

A→ B→ C = A→ (B→ C)

Which of the above brackets are unneeded?

Right-associativity

The codomain of a function can it-
self consist of functions:

pair ∶∶ A→ B→ A×B
(pair(a))(b) = (a,b)

And the domain of a function can it-
self consist of functions:

doTwice ∶∶ (A→ A)→ A→ A
(doTwice(f))(a) = f(f(a))
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FromMathematics to Programming

▶ Syntax differs between standard mathematics and any given
programming language, e.g. f x in Haskell instead of f(x).

▶ Mathematicians are comfortable with infinite constructions,
such as real numbers, but programmers are restricted to
finite memory.

▶ Mathematical functions assign an output to every input —
programmed functions may crash, or get stuck in a loop.

▶ Mathematical functions are defined entirely by their
association of output to input; in programming one
mathematically identical function may be better than
another, e.g. it may run faster.

The Space of Functions
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Haskell
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