COMP1100: Programming as Problem Solving

Slides 2: Functions and Sets

Dr. Liam O'Connor

(based on material from Ranald Clouston, Yun Kuen Cheung, and Michael Norrish)

School of Computing, Australian National University

Semester 2 2025

Programming with Functions

Functional Programming

This course teaches a style of programming
called functional programming.

Sets €000

Programming with Functions

Functional Programming

This course teaches a style of programming
called func’{ional programming.

Functions are mappings between sets.

Sets €000

Sets

A set is a collection of things, called its elements.
P Notinany particular order
{3,4,8} = {8,3,4}
P> Each element appears only once
{1,1,2} ={1,2}

Sets 0®00

Sets

P Notinany particular order
{3)4)8} = {8)3)4}
P> Each element appears only once
{1)1)2} = {])2}

A set is a collection of things, called its elements.

Finite Sets

Some sets have only finitely many elements,
so can be listed:

Sets 0®00

P> Asingleton, e.g. {3} or {True}.
» The booleans B: {True, False}

Large finite sets may not be practical to list
out fully, so we use ranges:

» Asetof characters: {'A', 'B',...,'Z'}.
P> Abigger set of numbers: {0,1,2,...,100}.

Sets

P Notinany particular order
{3)4)8} = {8)3)4}
P> Each element appears only once
{1)1)2} = {])2}

A set is a collection of things, called its elements.

Finite Sets

Some sets have only finitely many elements,
so can be listed:

» The natural numbersN: {0,1,2,...}
» Theintegers Z: {...,-1,0,1,2,...}
» The real numbers R

P The strings: lists of characters of
any finite length.

Sets 0®00

P> Asingleton, e.g. {3} or {True}.
» The booleans B: {True, False}

Large finite sets may not be practical to list
out fully, so we use ranges:

» Asetof characters: {'A', 'B',...,'Z'}.
P> Abigger set of numbers: {0,1,2,...,100}.

Combining Sets: Product

Given two sets A and B, we can form a new set
A x B, called the product (or cartesian product), by
including every pair (a,b) where a is an element
of A and b is an element of B.

Sets 0O®0

Combining Sets: Product

Given two sets A and B, we can form a new set
A x B, called the product (or cartesian product), by
including every pair (a,b) where a is an element
of A and b is an element of B.

B x {Red, Green, Blue} is:

{(False, Red), (False, Green), (False, Blue),
(True,Red), (True, Green), (True, Blue)}

Sets 0O®0

Combining Sets: Product

Given two sets A and B, we can form a new set
A x B, called the product (or cartesian product), by
including every pair (a,b) where a is an element
of A and b is an element of B.

B x {Red, Green, Blue} is:

{(False, Red), (False, Green), (False, Blue),
(True,Red), (True, Green), (True, Blue)}

Sets 0O®0

Products can extend to more than
two sets:

AxBxCxD

whose members have the form
(a)b)c)d)'

e.g. B x {Red, Green, Blue} x B?

Combining Sets: Sum

Given two sets A and B, we can form a new set A +
B, called the sum, by combining:

P> Every element a of A, along with a ‘tag’ to
remind us that it came from the left:

(a,Left)
P> Every element b of B, tagged right:
(a,Right)

Sets 000®

Combining Sets: Sum

Given two sets A and B, we can form a new set A +
B, called the sum, by combining:

P> Every element a of A, along with a ‘tag’ to
remind us that it came from the left:

(a,Left)
P> Every element b of B, tagged right:
(a,Right)

Example: B + {Red, Green, Blue}

{(False, Left), (True, Left),
(Red, Right), (Green, Right), (Blue,Right)}

Sets 000®

Combining Sets: Sum

Coemmton [question

Given two sets A and B, we canformanewset A+ | | Why do we need the tags?
B, called the sum, by combining:

P> Every element a of A, along with a ‘tag’ to
remind us that it came from the left:

(a,Left)
P> Every element b of B, tagged right:
(a,Right)

Example: B + {Red, Green, Blue}

{(False, Left), (True, Left),
(Red, Right), (Green, Right), (Blue,Right)}

Sets 000®

Combining Sets: Sum

Soehmiton - Jqueston

Given two sets A and B, we can form a new set A + Why do we need the tags?
B, called the sum, by combining:

We want our sets to remain entirely

P> Every element a of A, along with a ‘tag’ to =
disjoint. Consider B + B.

remind us that it came from the left:
(a,Left) Note: A + B is therefore different
from set union A U B!

P> Every element b of B, tagged right:
(a,Right)

Example: B + {Red, Green, Blue}

{(False, Left), (True, Left),
(Red, Right), (Green, Right), (Blue,Right)}

Sets 000®

Combining Sets: Sum

Given two sets A and B, we can form a new set A +
B, called the sum, by combining:

P> Every element a of A, along with a ‘tag’ to
remind us that it came from the left:

(a,Left)
P> Every element b of B, tagged right:
(a,Right)

Example: B + {Red, Green, Blue}

{(False, Left), (True, Left),
(Red,Right), (Green, Right), (Blue,Right)}

Sets 000®

Question

Why do we need the tags?
We want our sets to remain entirely
disjoint. Consider B + B.

Note: A + B is therefore different
from set union A U B!

Sums can extend to more than two
sets:
A+B+C+D

Although we had better pick better
names for tags than Left and Right!

Functions

A function is defined by:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

P Anassignment from each element of A
(input) to one element of B (output).

Functions ®0000

Functions

A function is defined by: Giving such a function a name f, we write:
> Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

fu:A->B

f(a)=b

Functions ®0000

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

True) (, True

False False

fu:A->B

f(a)=b

Functions ®0000

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

True) (, True

False/ ,\False

fu:A->B

f(a)=b

{ This is the identity function B — B.]

Functions ®0000

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

fu:A->B

f(a)=b

True o

False

Functions ®0000

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

fu:A->B

f(a)=b

True True

False False

The constant function returning True.

Functions ®0000

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

True ? True
False False

Functions ®0000

fu:A->B

f(a)=b

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

fu:A->B

f(a)=b

True ? True

False False

Thisis notatotal function —itis partial

Functions ®0000

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

fu:A->B

f(a)=b

True True

False False

Functions ®0000

Functions

Coehmiton P Votation

A function is defined by: Giving such a function a name f, we write:
P Aset A, called the domain;
> Aset B, called the codomain (or range);

» Anassignment from each element of A If f assigns output b to input a, we write:
(input) to one element of B (output).

fu:A->B

f(a)=b

True True

False/ ,\False

This is not a function (but a relation)

Functions ®0000

Defining Functions

If the domain is finite, we can define a
function by listing its output for each
possible input.

For example, define:

foB—>Z
f(False) = -6
f(True) = 26

Functions c®000

Defining Functions

If the domain is finite, we can define a For larger domains, we must explain how to
function by listing its output for each compute the output for all inputs:
possible input.

minus =7 - 7

For example, define: minus(x) = -x
fuB->Z isPos: 7 — B
f(False) = -6 True ifyis positive
f(True) = 26 isPos(y) = A{False ifyisnegative
False ify=0

Here x andy are variables, which stand for any
element of Z.

Functions c®000

Polymorphic Functions

Afunction that can be defined simultaneously
for many different sets is called polymorphic.

» The identity function:
id:A—-A
id(a)=a

P The constant zero function:
cz:B -7
cz(b) =0

Here A and B are variables which stand for any
set—and aand b are variables which stand for
arbitrary elements of those sets.

Functions

Polymorphic Functions

Afunction that can be defined simultaneously Let's define these together:
for many different sets is called polymorphic. > proj A xB—A
P The identity function: > projp:AxB—B
id: A= A Vinj]_::A—>A+B
id(a)=a > injp=B->A+B
P The constant zero function:
cz:B->Z
cz(b) =0

Here A and B are variables which stand for any
set—and aand b are variables which stand for
arbitrary elements of those sets.

Functions coeoo

Polymorphic Functions

Afunction that can be defined simultaneously Is this function polymorphic?
for many different sets is called polymorphic.

» The identity function: minus : A - A

minus(x) = -x
id:A—-A
id(a)=a

P The constant zero function:

cz:B—~>Z
cz(b) =0
Here A and B are variables which stand for any

set—and aandb are variables which stand for
arbitrary elements of those sets.

Functions coeoo

Polymorphic Functions

Afunction that can be defined simultaneously Is this function polymorphic?
for many different sets is called polymorphic.

» The identity function: minus : A - A

minus(x) = -x

;g(';;‘:aA Defined for more than one set, e.g.
Z,R, but not defined for others, e.g.
P The constant zero function: N, B.
e This function is polymorphic only
o) =C for sets where (-) is defined.

Here A and B are variables which stand for any
set—and aand b are variables which stand for
arbitrary elements of those sets.

Functions

Combining Functions: Composition

If we have functionsf: A - Bandg: B - C,
we define a new functiongof: A — C by

(geof)(a) =g(f(a))

Functions cooeo

Combining Functions: Composition

If we have functionsf:: A - Bandg:B - C,
we define a new function go f:: A - C by

(gof)(a) = g(f(a))

Functions cooeo

Earlier we defined minus = Z - Z
and isPos :: Z — B.

P Can we define minus o isPos or
isSPos o minus?

Combining Functions: Composition

If we have functionsf: A - Bandg: B - C,
we define a new functiongof: A — C by

(geof)(a) =g(f(a))

Functions cooeo

Earlier we defined minus = Z - Z
and isPos :: Z — B.
P Can we define minus o isPos or
isPos o minus?
P For the one we can define,
what is the domain and
codomain?

Combining Functions: Composition

If we have functionsf: A - Bandg: B - C,
we define a new functiongof: A — C by

(geof)(a) =g(f(a))

Functions cooeo

Earlier we defined minus = Z - Z
and isPos :: 7 — [B.
P Can we define minus o isPos or
isSPos o minus?

P For the one we can define,
what is the domain and
codomain?

P Canyou describe in words what
this combined function does?

Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given sets A and B, we can form a new set
A — B —theset of all possible functions from
A to B.

There is no difference between writing:
f:A—->B

and saying:

“f is an element of the set A - B”

Functions

Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given sets A and B, we can form a new set
A — B —theset of all possible functions from
A to B.

There is no difference between writing:
f:A—->B
and saying:

“f is an element of the set A - B”

The codomain of a function can it-

self consist of functions:
pair: A - (B - A x B)
(pair(a))(b) = (a,b)

And the domain of a function can it-
self consist of functions:

doTwice = (A - A) > (A —>A)
(doTwice(f))(a) = f(f(a))

Functions

Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given sets A and B, we can form a new set
A — B —theset of all possible functions from
A to B.

There is no difference between writing:
f:A—->B

and saying:

“f is an element of the set A - B”

The codomain of a function can it-

self consist of functions:
pair: A - (B - A x B)
(pair(a))(b) = (a,b)

And the domain of a function can it-
self consist of functions:

doTwice = (A - A) > (A —>A)
(doTwice(f))(a) = f(f(a))

Functions

A-B-C=A->(B-C)

Which of the above brackets are unneeded?

Combining Sets: Sets of Functions

Until now we have thought of elements of
sets, and functions, as different things.

But given sets A and B, we can form a new set
A — B —theset of all possible functions from
A to B.

There is no difference between writing:
f:A—->B

and saying:

“f is an element of the set A - B”

The codomain of a function can it-
self consist of functions:

pair: A —-B —> A xB
(pair(a))(b) = (a,b)

And the domain of a function can it-
self consist of functions:

doTwice:: (A - A)>A > A
(doTwice(f))(a) = f(f(a))

Functions

A-B-C=A->(B-C)

Which of the above brackets are unneeded?

From Mathematics to Programming

» Syntax differs between standard mathematics and any given
programming language, e.g. £ x in Haskell instead of f(x).

» Mathematicians are comfortable with infinite constructions,
such as real numbers, but programmers are restricted to
finite memory.

» Mathematical functions assign an output to every input —
programmed functions may crash, or get stuck in a loop.

» Mathematical functions are defined entirely by their
association of output to input; in programming one
mathematically identical function may be better than
another, e.g. it may run faster.

Functional Programming

Haskell

Functional Programming oe®

	Sets
	Functions
	Functional Programming

