
Week 4

Administrative Stuff

Drop in sessions have begun, Fridays at 2pm at Skaidrite Darius N109
Oliver Walsh has been appointed as a class rep for this course.

Still looking for one more if possible!

Prelude

Combining our knowledge from the previous topics:

recursion (on both lists and integers)
polymorphism
common datatypes (lists, tuples, maybes)

We will now look at Haskell’s default built-in library, called the “Prelude”. The types and
implementation details of built-in functions can be more involved than what we have studied so far,
but the basic ideas are the same.

Syntax for infix operators

Some functions in Haskell are infix operators, like the ++ operator we have seen which appends two lists
together. These operators are just normal functions, just with a symbolic name rather than an alphabetical
one. To define a function with a symbolic name, we must wrap the name in parentheses like this: (++) . Thus,
we can write a definition of (++) as follows:

(++) :: [a] -> [a] -> [a]

xs ++ ys = case xs of

 [] -> ys
 (x:rest) -> x : (rest ++ ys)

Similarly, a function with an alphabetical name, like div or mod , can be used as an infix operator by
surrounding it in `backticks` . For example, div 10 2 is the same as writing 10 `div` 2

We have already seen many functions in the Prelude, including:

length :: [a] -> Int
replicate :: Int -> a -> [a]
head :: ... => [a] -> a
(++) :: [a] -> [a] -> [a]

For more details about Prelude’s functions, check the documentation pages for it on Hackage. Inside
GHCi, use the commands :type (or :t) or :doc .

Some Important Prelude Functions

The zip function takes two lists, and returns a list of pairs, where the left hand side of each
pair comes from the first list and the right hand side of each pair comes from the second list.
For exampl, zip "ABCDE" [1..5] evaluates to [('A',1),('B',2),('C',3),('D',4)('E',5)] .

Exercise: implement our own zip function.
The unzip function takes a list of pairs and produces a pair of lists, effectively undoing the

operation of zip . So, for example, unzip [('A',1),('B',2),('C',3),('D',4)('E',5)]
evaluates to ("ABCDE",[1,2,3,4,5])

Exercise: implement our own unzip function.
The take function takes an integer n and a list lst and returns a list containing just the first
n elements of lst . Similarly, drop n lst returns a list containing everything in lst except
the first n elements.

Implementing these is a lab exercise.
The (!!) function takes a list and an integer n and returns the element at index n in the list.

Exercise: implement this function
The reverse function reverses a list.
The concat function, given a list of lists, appends them all together into one list. For example,
concat ["hello"," world"] == "hello world" .

Details to Ignore

Many functions in Prelude involve things that are not covered in this course. For example:

ghci> :type length
length :: Foldable t => t a -> Int

The actual type-signature (t a -> Int) is on the right of the double arrow (=>). The left of the
double arrow says that t has to be “foldable”. Lists are foldable, so t a can be substituted with
[a] . Hence, length has type [a] -> Int .

Similarly,

ghci> :type head
head :: GHC.Stack.Types.HasCallStack => [a] -> a

The preamble ‘ HasCallStack ’ stuff just means that this function may produce an error. Overall this
function still has the type [a] -> a .

Beyond the Prelude

Sometimes we will need to import functions from libraries other than the Prelude. You have already
seen this with some examples from Data.Char . There are also several useful functions in
Data.List and Data.Maybe . As an example, take catMaybes from Data.Maybe . Given a list of
Maybe values, say [Nothing, Just 3, Nothing, Nothing, Just 4, Just 5] , it will return the list
[3,4,5] -- every non- Nothing value in the input list.

Exercise: implement our own catMaybes

Style and Testing

Overview

Important Program Qualities
1. Correctness — via testing and verification
2. Maintainability — through good coding style and clear reports
3. Efficiency — addressed later in the course

These are in order of priority.

3. Testing vs. Verification

Testing
Involves checking a program against a set of test cases (manually crafted or auto-
generated)
Reveals the presence of bugs—but not their absence

Verification
Uses mathematical reasoning to prove the absence of bugs
Highly labor-intensive and beyond the course scope

Black‑Box vs. White‑Box Testing

Black‑Box Testing

Focuses on behavior defined by the specification, independent of implementation details
Test cases can be crafted before code is written
Design strategy:

Group inputs by behavior
Select representative cases per group
Pay careful attention to edge cases (e.g., boundaries, zero)
Examples of input groups:

Int : zero, positives, negatives, extremes
List : empty, singleton, longer lists

White‑Box Testing

Based on the actual implementation
Identify where the code takes branches (e.g., case expressions, guards, recursion)
Focus on:

Boundary values
Overlapping or catch-all (otherwise) cases

Example:

maxThree :: Int -> Int -> Int -> Int
maxThree x y z
 | x > y && x > z = x
 | y > x && y > z = y
 | otherwise = z

A good case to test: maxThree 2 2 1 — it probes behavior in overlapping conditions

5. Summary of Testing Principles

No test suite can cover every input.
Aim to maximize bug detection by testing boundary and representative cases.
Use testing groups to ensure broad coverage of potential input types

6. Documenting Test Cases & Tools

Manual testing (e.g., in GHCI) is useful but not scalable or maintainable.
Better practice: document tests using doctest:

-- | Compute the n’th Fibonacci number (counting starts at 1)
-- >>> fib 10
-- 55
-- >>> fib 5
-- 5
fib :: Int -> Int

Then run: doctest MyFileName.hs

7. Other Testing Approaches

Randomised Testing can run many test cases automatically but may miss edge cases
Tools like QuickCheck support such strategies, though they are beyond this course’s scope

8. Code Style & Readability

Code should be written not just to run, but to be read, understood, maintained, and
extended by others and your future self
Code style is assessed in assignments and the final exam

Commenting

Explain what the code does—not how it works
Use:

-- for single-line comments
{- ... -} for multi-line comments

Example of better commenting:

-- Returns the length of the list.

versus:

-- If the list is empty, returns 0.
-- Otherwise, return 1 plus the length of the tail.

Type Declarations

Type signatures clarify a function’s intent and improve readability
Even though GHCi can infer types, explicit declarations are good style
Example: altTake :: [a] -> Int -> [a]

Naming & Formatting

Use meaningful, descriptive names
Conventions:

lowerCamelCase for functions and variables
UpperCamelCase for types and constructors
Examples to avoid: f , x:xs when more descriptive names exist

Case Expressions vs Guards

Prefer guards for clarity and conciseness:

myAbs :: Int -> Int
myAbs x
 | 0 <= x = x
 | otherwise = -x

Simplify trivial guard functions:

isPositive x = 0 < x

Additional Style Tips

Remove dead or unused code (and resolve related warnings)
Abstract repeated logic into helper functions
Use Prelude functions when possible
Keep lines ≤ 80 characters
Use spaces—not tabs—for indentation—and remain consistent

