Week 4

Administrative Stuff

e Drop in sessions have begun, Fridays at 2pm at Skaidrite Darius N109
e Oliver Walsh has been appointed as a class rep for this course.
o Still looking for one more if possible!



Prelude

Combining our knowledge from the previous topics:

recursion (on both lists and integers)
polymorphism
common datatypes (lists, tuples, maybes)

We will now look at Haskell's default built-in library, called the “Prelude”. The types and
implementation details of built-in functions can be more involved than what we have studied so far,
but the basic ideas are the same.

Syntax for infix operators

Some functions in Haskell are infix operators, like the ++ operator we have seen which appends two lists
together. These operators are just normal functions, just with a symbolic name rather than an alphabetical
one. To define a function with a symbolic name, we must wrap the name in parentheses like this: (++) . Thus,
we can write a definition of (++) as follows:

(++) ¢ [a] -> [a] -> [a]
XS ++ ys = case xs of
[]1 ->ys
(x:rest) -> x : (rest ++ ys)

Similarly, a function with an alphabetical name, like div or mod, can be used as an infix operator by
surrounding it in “backticks .For example, div 10 2 isthe same as writing 10 “div’ 2

We have already seen many functions in the Prelude, including;:

leng
repl

head ::
(++) =

th :: [a] -> Int
icate :: Int -> a -> [a]
. => [a] -> a

[a] -> [a] -> [a]

For more details about Prelude’s functions, check the documentation pages for it on Hackage. Inside
GHCi, use the commands :type (or :t)or :doc.

Some Important Prelude Functions

The zip function takes two lists, and returns a list of pairs, where the left hand side of each

pair comes from the first list and the right hand side of each pair comes from the second list.

For exampl, zip "ABCDE" [1..5] evaluatesto [('A',1),('B',2),('C',3),('D',4)('E',5)].
o Exercise: implement our own zip function.

The unzip function takes a list of pairs and produces a pair of lists, effectively undoing the



operation of zip. So, for example, unzip [('A',1),('B',2),('C',3),('D',4)('E',5)]
evaluates to ("ABCDE", [1,2,3,4,5])

o Exercise: implement our own unzip function.
e The take function takes an integer n and alist 1st and returns a list containing just the first

n elements of 1lst. Similarly, drop n 1st returns a list containing everything in 1st except
the first n elements.

o Implementing these is a lab exercise.
e The (!!) function takes a list and an integer n and returns the element at index n in the list.

o Exercise: implement this function
e The reverse function reverses a list.
e The concat function, given a list of lists, appends them all together into one list. For example,

concat ["hello"," world"] == "hello world" .

Details to Ignore

Many functions in Prelude involve things that are not covered in this course. For example:

ghci> :type length
length :: Foldable t => t a -> Int

The actual type-signature (t a -> Int) ison theright of the double arrow (=>). The left of the
double arrow says that t has to be “foldable”. Lists are foldable, so t a can be substituted with
[a] . Hence, length hastype [a] -> Int.

Similarly,

ghci> :type head
head :: GHC.Stack.Types.HasCallStack => [a] -> a

The preamble ' HasCallStack ' stuff just means that this function may produce an error. Overall this
function still has the type [a] -> a.

Beyond the Prelude

Sometimes we will need to import functions from libraries other than the Prelude. You have already
seen this with some examples from Data.Char . There are also several useful functions in

Data.List and Data.Maybe . As an example, take catMaybes from Data.Maybe . Given a list of
Maybe values, say [Nothing, Just 3, Nothing, Nothing, Just 4, Just 5], it will return the list
[3,4,5] --every non-Nothing value in the input list.

» Exercise: implement our own catMaybes



Style and Testing

Overview

o Important Program Qualities
1. Correctness — via testing and verification
2. Maintainability — through good coding style and clear reports
3. Efficiency — addressed later in the course

These are in order of priority.

3. Testing vs. Verification

e Testing
o Involves checking a program against a set of test cases (manually crafted or auto-
generated)
o Reveals the presence of bugs—but not their absence
e Verification
o Uses mathematical reasoning to prove the absence of bugs
o Highly labor-intensive and beyond the course scope

Black-Box vs. White-Box Testing

Black-Box Testing

e Focuses on behavior defined by the specification, independent of implementation details
e Test cases can be crafted before code is written
e Design strategy:

o Group inputs by behavior
Select representative cases per group
Pay careful attention to edge cases (e.g., boundaries, zero)
Examples of input groups:

= Int:zero, positives, negatives, extremes

(o]

o

o

= List:empty, singleton, longer lists

White-Box Testing

e Based on the actual implementation
 |dentify where the code takes branches (e.g., case expressions, guards, recursion)
e Focuson:

o Boundary values

o Overlapping or catch-all (otherwise ) cases



o Example:

maxThree :: Int -> Int -> Int -> Int
maxThree X y z
| X >y & X > z
| y>x¢&& Yy >z
| otherwise

1
< X

1
N

A good case to test: maxThree 2 2 1 — it probes behavior in overlapping conditions

5. Summary of Testing Principles

e No test suite can cover every input.
e Aim to maximize bug detection by testing boundary and representative cases.
e Use testing groups to ensure broad coverage of potential input types

6. Documenting Test Cases & Tools

e Manual testing (e.g., in GHCI) is useful but not scalable or maintainable.
e Better practice: document tests using doctest:

-- | Compute the n’th Fibonacci number (counting starts at 1)
-- >>> fib 10

-- 55

-- >>> fib 5

-- 5

fib :: Int -> Int

Then run: doctest MyFileName.hs

7. Other Testing Approaches

e Randomised Testing can run many test cases automatically but may miss edge cases
e Tools like QuickCheck support such strategies, though they are beyond this course’s scope

8. Code Style & Readability

o Code should be written not just to run, but to be read, understood, maintained, and
extended by others and your future self
e Code style is assessed in assignments and the final exam

Commenting

e Explain what the code does—not how it works
e Use:

o -- forsingle-line comments

o {- ... -} for multi-line comments



e Example of better commenting:

-- Returns the length of the list.

versus:

-- If the list is empty, returns 0.
-- Otherwise, return 1 plus the length of the tail.

Type Declarations

e Type signatures clarify a function’s intent and improve readability
e Even though GHCi can infer types, explicit declarations are good style
Example: altTake :: [a] -> Int -> [a]

Naming & Formatting

e Use meaningful, descriptive names
e Conventions:
o lowerCamelCase for functions and variables
o UpperCamelCase for types and constructors
Examples to avoid: f, x:xs when more descriptive names exist

Case Expressions vs Guards

o Prefer guards for clarity and conciseness:

myAbs :: Int -> Int
myAbs X

| © <= X

| otherwise

no
X
x

o Simplify trivial guard functions:

isPositive x = 0 < x

Additional Style Tips

e Remove dead or unused code (and resolve related warnings)

e Abstract repeated logic into helper functions

e Use Prelude functions when possible

o Keep lines < 80 characters

e Use spaces—not tabs—for indentation—and remain consistent



