
Week 5

Higher Order Functions

Introduction

Functions take values as inputs and return values as outputs.
In Haskell, functions are first-class values.

Functions can be passed as inputs to other functions.
Functions can be outputs of other functions (via partial application).
Functions can be anonymous (defined without names).

Functions that accept or return functions are known as higher-order functions.

Associativity of ->

In type declarations, -> is right-associative:

a -> b -> c ≡ a -> (b -> c)

Multi-argument functions are “curried”—arguments are provided one at a time.
Note the distinction:

a -> (b -> c) ≠ (a -> b) -> c

Partial Application: Motivation

Example with a one-argument function:

f :: a -> b
x :: a
f x :: b

Example with a two-argument function:

g :: a -> b -> c -- equivalent to g :: a -> (b -> c)
x :: a
g x :: b -> c -- Now a function awaiting the second argument

Examples of Partial Application

take

take :: Int -> ([a] -> [a])

take 5 :: [a] -> [a]

(take 5) "Desmond" == "Desmo"
(take 5) [1,2,3] == [1,2,3]

replicate

replicate :: Int -> a -> [a]
replicate 2 :: a -> [a]

(replicate 2) "Go" == ["Go","Go"]
(replicate 2) (True,2.3) == [(True,2.3),(True,2.3)]

(+) (addition)

(+) :: Int -> (Int -> Int)
(+) 2 :: Int -> Int

((+) 2) 3 == 5
-- Alternate notations: (2+) or (+2)

(:) (cons)

(:) :: a -> ([a] -> [a])
(:) 'a' :: [Char] -> [Char]
(:) 2 :: [Int] -> [Int]

(0:) [] == [0]
(0:) [8,4,5] == [0,8,4,5]

Summary: Parentheses and Application

Right-associativity of -> :

Int -> [a] -> [a] ≡ Int -> ([a] -> [a])

In expressions, function application is left-associative:

take 5 "Desmond" == (take 5) "Desmond"

Functions as Inputs: Motivation

Example list:

[2.35, 2.40, 2.00, 2.65, 3.12, 2.77]

Two tasks:
Round each Float to Int → [2, 2, 2, 3, 3, 3]

Check if each measurement is > 3 → [False, False, False, False, True, False]

Using Recursion

roundEach :: [Float] -> [Int]
roundEach [] = []
roundEach (x:xs) = roundFloatInt x : roundEach xs

eachGreaterThan3 :: [Float] -> [Bool]
eachGreaterThan3 [] = []
eachGreaterThan3 (x:xs) = (>3) x : eachGreaterThan3 xs

Introducing map

Motivation

Functions like roundEach and eachGreaterThan3 share a common pattern:

Apply a function f to each element of a list → collect the results.

Defining map

myMap :: (a -> b) -> [a] -> [b]
myMap f ls = case ls of
 [] -> []
 (x:xs) -> f x : myMap f xs

-- Now available in Prelude as `map`.

Using map to simplify:

roundEach = map roundFloatToInt
eachGreaterThan3 = map (>3)

Function Composition

Motivation

Compose f and g :

Apply f to x , then apply g to f x → g (f x) .

Type of composition:

(.) :: (b -> c) -> (a -> b) -> (a -> c)
-- Alternatively written as:
-- (.) :: (b -> c) -> (a -> b) -> a -> c

compo :: (b -> c) -> (a -> b) -> a -> c
compo g f x = g (f x)

Example:

Given length :: [a] -> Int , even :: Int -> Bool :

lengthEven :: [a] -> Bool
lengthEven = even . length

-- Equivalent to:
lengthEven xs = even (length xs)

Other Useful Higher‑Order Functions

filter

filter :: (a -> Bool) -> [a] -> [a]
filter f xs = [x | x <- xs, f x]

-- Example:
filter even [1,2,3,2,4,3] == [2,2,4]

zipWith

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

-- Example:
zipWith take [1,2,3] ["one","two","three"] == ["o","tw","thr"]

concatMap

concatMap :: (a -> [b]) -> [a] -> [b]

-- Example:
concatMap (take 2) ["one","two","three"] == "ontwth"

Exercises

Define your own versions:
myFilter , using explicit recursion.
myZipWith , using zip , map , and anonymous functions.
myConcatMap , using map , concat , composition, and partial application.

Anonymous Functions (Lambdas)

Three ways to pass a function to a higher-order function:

Partial application:

filter (==0) [1,1,0,0]

Named function:

map sndOfTriple [(1,2,3), (3,2,1)]

sndOfTriple :: (a,b,c) -> b
sndOfTriple (_, y, _) = y

Anonymous function (lambda):

map (\(_, y, _) -> y) [(1,2,3), (3,2,1)]

Syntax:

\ var1 var2 ... varN -> expr

-- Example:
(\x -> x + 1)
(\x y -> x + y)
(\(x,y) -> x < y)

Exercise: Filtering with Lambda

Define:

f :: [(Int, Int)] -> [(Int, Int)]

that keeps only pairs where the first component is less than the second:

f [(2,1), (2,5), (3,4), (3,3)] == [(2,5), (3,4)]

Using filter with lambda:

f pairs = filter (\(x,y) -> x < y) pairs
-- Or simply:
f = filter (\(x,y) -> x < y)

