Week 5

Higher Order Functions

Introduction

e Functions take values as inputs and return values as outputs.
e In Haskell, functions are first-class values.
o Functions can be passed as inputs to other functions.
o Functions can be outputs of other functions (via partial application).
o Functions can be anonymous (defined without names).
e Functions that accept or return functions are known as higher-order functions.

Associativity of ->
e Intype declarations, -> is right-associative:
a->b->c =a->(b->c)
e Multi-argument functions are “curried"—arguments are provided one at a time.

e Note the distinction:
o a->(b->c)#* (a->b) ->c

Partial Application: Motivation

e Example with a one-argument function:

f:ta->b
X i a
fx::b

e Example with a two-argument function:

g::ra->b->c -- equivalent to g :: a -> (b -> ¢)
X a
gx ::b->c -- Now a function awaiting the second argument

Examples of Partial Application
take

take :: Int -> ([a] -> [a])

take 5 :: [a] -> [a]

(take 5) "Desmond" == "Desmo"

(take 5) [1,2,3] == [1,2,3]
replicate

replicate :: Int -> a -> [a]

replicate 2 :: a -> [a]

(replicate 2) "Go" == ["Go","Go"]

(replicate 2) (True,2.3) == [(True,2.3),(True,2.3)]

(+) (addition)

(+) :: Int -> (Int -> Int)
(+) 2 :: Int -> Int

((+) 2) 3==5
- Alternate notations: (2+) or (+2)

(:) (cons)

(:) =+ a->([a] -> [a])

(:) 'a' :: [Char] -> [Char]
(:) 2 i [Int] -> [Int]
(0:) [1 == [0]

(0:) [8,4,5] == [0,8,4,5]

Summary: Parentheses and Application
e Right-associativity of ->:
Int -> [a] -> [a] = Int -> ([a] -> [a])
e In expressions, function application is left-associative:

take 5 "Desmond" == (take 5) "Desmond"

Functions as Inputs: Motivation

e Example list:

[2.35, 2.40, 2.00, 2.65, 3.12, 2.77]

e Two tasks:
o Roundeach Float to Int - [2, 2, 2, 3, 3, 3]

o Check if each measurementis > 3 - [False, False, False, False,

Using Recursion

roundEach :: [Float] -> [Int]

roundEach [] =[]

roundach (x:xs) = roundFloatInt x : roundEach xs
eachGreaterThan3 :: [Float] -> [Bool]

eachGreaterThan3 [] =[]
eachGreaterThan3 (x:xs) = (>3) x : eachGreaterThan3 xs

Introducing map

Motivation
Functions like roundeach and eachGreaterThan3 share a common pattern:
e Apply a function f to each element of a list - collect the results.
Defining map
myMap :: (a -> b) -> [a] -> [b]
myMap f 1s = case ls of
[l -> []

(x:xs) -> f x : myMap f xs

-- Now available in Prelude as "map’.

Using map to simplify:

roundEach
eachGreaterThan3

map roundFloatToInt
map (>3)

Function Composition

Motivation
Compose f and g:

e Apply f to x,thenapply gto f x -~ g (f x).

Type of composition:

(.) :: (b ->¢c) -> (a ->Db) -> (a ->c)
-- Alternatively written as:
--(.) :: (b->c) ->(a->b) ->a ->c

True,

False]

compo :: (b ->c¢c) -> (a ->b) ->a ->c
compo g f x =g (f x)

Example:
e Given length :: [a] -> Int, even :: Int -> Bool:

lengthEven :: [a] -> Bool
lengthEven = even . length

-- Equivalent to:
lengthEven xs = even (length xs)

Other Useful Higher-Order Functions
filter

filter :: (a -> Bool) -> [a] -> [a]
filter f xs = [x | x <- xs, f x]

-- Example:
filter even [1,2,3,2,4,3] == [2,2,4]

zipWith
zipwith :: (a -> b ->c¢) -> [a] -> [b] -> [c]

-- Example:
zipwith take [1,2,3] ["one", "two","three"] == ["0o", "tw","thr"]

concatMap

concatMap :: (a -> [b]) -> [a] -> [b]

-- Example:
concatMap (take 2) ["one", "two","three"] == "ontwth"

Exercises

e Define your own versions:
o myFilter, using explicit recursion.
o myZipwith, using zip, map, and anonymous functions.
o myConcatMap, using map, concat, composition, and partial application.

Anonymous Functions (Lambdas)

Three ways to pass a function to a higher-order function:

e Partial application:

filter (==0) [1,1,0,0]

e Named function:
map sndOfTriple [(1,2,3), (3,2,1)]

sndOfTriple :: (a,b,c) -> b
sndofTriple (_, vy, _) = vy

e Anonymous function (lambda):

map (\(—l \z —) -> y) [(112/3)1 (312/1)]

Syntax:

\ varl var2 ... varN -> expr
- Example:
(\x ->x + 1)

(\xy ->x+vy)
(\(x,y) -> x<Yy)

Exercise: Filtering with Lambda

Define:

f :: [(Int, Int)] -> [(Int, Int)]

that keeps only pairs where the first component is less than the second:
f [(2,1), (2,5), (3,4), (3,3)] == [(2,5), (3,4)]

Using filter with lambda:

f pairs = filter (\(x,y) -> x < y) pairs

- Or simply:
f = filter (\(X,y) -> x <vy)

