
COMP1110/1140/6710
Structured programming

Week-7 (A)

Recursion Revisited

16-Sept-2024

1

• Java language features

• Object-Oriented programming

• Code Development & Software
Engineering

2

Topics for the first half of this semester (H1):

Topics for the second half of this semester (H2):

 Core Computer Science & ADT:

3

Outline (tentative plan) for 2H of 2024 S2
• Week-7: (HL)

• Recursion revisited (deep dive)
• Backtracking technique
• (optional) Java: multi-thread (TBC)
• Complexity Analysis and Big-O notation

• Week-8: (HL)
• ADT : Basic Concepts
• ADT List, and list Implementations
• Array and Linked-list

• Week-9: (PH)
• ADT: trees
• Binary search trees
• ADT: set and map
• Java: files

• Week-10: (PH)
• ADT: Hash table, hash set
• Hash code and hash function
• Hash applications
• Software system development.

• Week-11: (HL)
• ADT: graph data structure
• Graph traversal (DPS, BFS, A*)
• Graph algorithms (MST, minimal path, TSP, max-flow min-

cut).

• Week-12: Class Review (PH) 4

A few words about your 2nd convenor/lecturer: Hongdong Li

• https://scholar.google.com/citations?u
ser=Mq89JAcAAAAJ&hl=en

• CSRanking:
• https://csrankings.org/#/fromyear/200

6/toyear/2024/index?vision&au

5

https://scholar.google.com/citations?user=Mq89JAcAAAAJ&hl=en
https://scholar.google.com/citations?user=Mq89JAcAAAAJ&hl=en
https://csrankings.org/
https://csrankings.org/

This week’s topics

• (A): Recursion revisited (deep dive)

• (B) : [Optional] Java: multi-threads and parallel programming

• (C) : Computational Complexity

6

Recursion Revisited

7

Recall:
 Recursion (the basics)

8

Recursion (the basics)

9

10

Learning Objectives

• Thinking recursively

• Tracing execution of a recursive method

• Writing recursive algorithms

• Recursive data structures
• E.g. LinkedList, tree, etc.

Quotes about “recursion”

• “To iterate is human, to recurse, divine.”
 L. Peter Deutsch, computer scientist, or
 Robert Heller, computer scientist, or ...

• “Mastering the recursive way of thinking is what separates a Computer
Scientist from all other people who also know computer programming. ”

11

12

Recursive Thinking

• Recursion is:

• A problem-solving approach, that can ...
• Generate simple solutions to ...
• Certain kinds of problems that ...
• Would be difficult to solve in other ways

• Recursion splits a problem:
• Into one or more simpler versions of itself

13

Recursive Thinking: Example(1):
 Factorial function

14

Recursive Thinking: Example(2)

Strategy for processing nested dolls: (Matryoshka dolls)

1. if there is only one doll
2. do what it needed for it
 else
3. do what is needed for the outer doll
4. Process the inner nest in the same way

15

Recursive Thinking: Example (3)

Strategy for binary searching a sorted array or list:
1. if the array is empty
2. return -1 as the search result (not present)
3. else if the middle element == target
4. return the index of the middle element
5. else if target < middle element
6. recursively search elements before middle point
7. else
8. recursively search elements after the middle point

16

The General Approach

1. if problem is “small enough” and can be solved directly,
i.e. the base case problem

2. solve it directly
3. else
4. break into one or more smaller subproblems
5. solve each subproblem recursively
6. combine results into solution to whole problem

17

Requirements for Recursion

• At least one “small enough” base case that you can solve
directly

• A way of breaking a larger problem down into:
• One or more smaller subproblems
• Each of the same kind as the original

• A way of combining subproblem results into an overall
solution to the larger problem

18

Recursion Design Strategy

• Identify the base case(s) (for direct solution)

• Devise a problem splitting strategy
• Subproblems must be smaller
• Subproblems must work towards a base case

• Devise a solution combining strategy

19

Recursion Design: Example

Recursive algorithm for finding the length of a string:

1. if string is empty (no characters)
2. return 0  base case
3. else  recursive case
4. compute length of string without the first character
5. return 1 + that length

Note: Not the best technique for this problem.

20

Recursive Design Example: Java code

Recursive algorithm for finding the length of a string:

public static int length (String str) {

 if (str == null ||

 str.equals(“”))

 return 0;

 else

 return length(str.substring(1)) + 1;

}

21

Tracing a Recursive Method (1)

length(“ace”)

return 1 + length(“ce”)

return 1 + length(“e”)

return 1 + length(“”)

0

1

2

3

Overall
result

In class Exercise:

22

Recall : three “musts” for recursion

23

The solution

24

25

How to prove a Recursive Method is correct ?

Recursive proof is similar to math. induction:

1. Show base case recognized and solved correctly

2. Show that
• If all smaller problems are solved correctly,
• Then original problem is also solved correctly

3. Show that each recursive case makes progress towards the
base case  terminates properly

26

Recursion and Mathematical Induction

• Recursion and mathematical induction
• Both use a base case to solve a problem
• Both solve smaller problems of the same type to derive a solution

• Induction can be used to
• Prove properties about recursive algorithms
• Prove that a recursive algorithm performs a certain amount of work

27

Proving the correctness by Mathematical Induction

1. Prove the theorem for the base case(s): n=0

2. Show that:

• If the theorem is assumed true for n,
• Then it must be true for n+1

Result: Theorem true for all n ≥ 0.

28

Recursive Definition of some mathematical functions

• Mathematicians often use recursive definitions

• These lead very naturally to recursive programs

• Examples include:

• Factorial
• Power
• GCD (Greatest common divisor)

29

Factorial (, once again)

• 0! = 1
• n! = n x (n-1)!

• If a recursive function never reaches its base case, a
stack overflow error occurs

Prove the Correctness of the Recursive Factorial

• Pseudocode for recursive factorial
 if (n is 0)

 return 1

 else

 return n * fact(n – 1)

• Induction on n proves the return values:
• fact(0) = 0! = 1

• fact(n) = n!= n*(n – 1)*

 (n – 2)*…* 1 if n > 0

Based on Mathematical Induction

30

31

Power function

• x0 = 1
• xn = x  xn-1

public static double power

 (double x, int n) {

 if (n <= 0) // or: throw exc. if < 0

 return 1;

 else

 return x * power(x, n-1);

}

Problem Solving with Recursion

32

33

Problem Solving with Recursion

• Towers of Hanoi
• Backtracking

• Maze puzzle
• 8-Queens puzzle
• Sudoku puzzle
• …

Towers of Hanoi: Description

34

Towers of Hanoi

• The ancient folklore :

“In the great temple at Benares, says he, beneath the dome which marks the centre of the
world, rests a brass plate in which are fixed three diamond needles, each a cubit high and
as thick as the body of a bee. On one of these needles, at the creation, God placed sixty-
four discs of pure gold, the largest disc resting on the brass plate, and the others getting
smaller and smaller up to the top one. This is the Tower of Bramah. Day and night
unceasingly the priests transfer the discs from one diamond needle to another according
to the fixed and immutable laws of Bramah, which require that the priest on duty must not
move more than one disc at a time and that he must place this disc on a needle so that
there is no smaller disc below it. When the sixty-four discs shall have been thus
transferred from the needle on which at the creation God placed them to one of the other
needles, tower, temple, and Brahmins alike will crumble into dust, and with a thunderclap
the world will vanish.''

35

How to solve this puzzle ?

36

37

Example of 4 disks

38

 A Recursive Solution Strategy

39

Towers of Hanoi:

 Recursion Structure

40

Towers of Hanoi:

 Java Code

public class TowersOfHanoi {

 public static String showMoves(int n,
 char src, char dst, char tmp) {

 if (n == 1)
 return “Move disk 1 from “ + src +
 “ to “ + dst + “\n”;

 else return

 showMoves(n-1, src, tmp, dst) +
 “Move disk “ + n + “ from “ + src +
 “ to “ + dst + “\n” +
 showMoves(n-1, tmp, dst, src);
 }
}

41

Performance Analysis:
 a primitive example of “computational complexity analysis”

How many steps required to solve the Hanoi tower of size n?

We’ll just count lines; call this T(n).
• For n = 1, one line: T(1) = 1
• For n > 1, one line plus twice T(n) for next smaller size:

T(n+1) = 2 x T(n) + 1

Solving this gives T(n) = 2n – 1 = O(2n)

A formal proof of time complexity

42

Time-complexity when n= 64

• 2^64-1 = ?

• If one can precisely make one move per second by hands, it will take
about 580 trillion years to succeed.

• Age of our universe: the universe is estimated to be 13.7 billion years
old.

43

Warning: Don’t even try this for very large n (say n= 64) on a
computer ; you will do a lot of string concatenation and garbage
collection, and then run out of computer memory and may crash
your computer !

44

Recursion versus Iteration

• Recursion and iteration are similar
• Iteration:

• Loop repetition test determines whether to exit
• Recursion:

• Condition tests for a base case
• Can always write iterative solution to a problem solved

recursively, but:
• Recursive code often simpler than iterative

• Thus, is easier to write, read, and understand.
• However, the memory complexity can be huge (may use up

func call stack very quickly.)

Recursive versus Iterative Methods

All recursive algorithms/methods

can be rewritten without recursion.

• Iterative methods use loops instead of recursion

• Iterative methods generally run faster and use less memory--less
overhead in keeping track of method calls

45

46

Tail Recursion → Iteration

When recursion involves single call that is at the end ...
It is called tail recursion and it easy to make iterative:

public static int iterFact (int n) {

 int result = 1;

 for (int k = 1; k <= n; k++) {

 result = result * k;

 }

 return result;

}

47

Efficiency of Recursion

• Recursive method often slower than iterative; why?
• Overhead for loop repetition smaller than
• Overhead for function call and return

• If easier to develop algorithm using recursion,
• Then code it as a recursive method:
• Software engineering benefit probably outweighs ...
• Reduction in efficiency

• Don’t “optimize” prematurely!

So When Should You Use Recursion?

• Solutions/algorithms for some problems are inherently recursive

• iterative implementation could be more complicated

• When efficiency is less important

• it might make the code easier to understand

• Bottom line is about:

• Algorithm design

• Tradeoff between readability and efficiency

48

A preview:

Next week, we will try to solve the “Towers of Hanoi” puzzle with
iteration, and analyze their computational complexity.

49

Recap: recursion

50

5-minute break

51

Backtracking for games

52

53

Backtracking technique
• Backtracking: A systematic trial-and-error search for solve a complex

problem
• Examples:

• Finding a path through a maze
• Board game (Chess, Go,..)
• Sudoku puzzle
• …

• For example, in walking through a maze, probably walk a path as far as
you can go

• Eventually, reach destination or a dead end
• If dead end, must retrace your steps
• Loops: stop when reach place you’ve been before

• Backtracking systematically tries alternative paths and eliminates
them if they don’t work

54

Backtracking technique (Cont.)

• If you never try exact same path more than once, and
• You try all possibilities,
• You will eventually find a solution if one exists

• Problems solved by backtracking: a set of choices

• Recursion implements backtracking straightforwardly
• Activation frame remembers choice made at that decision point

• A chess playing program likely involves backtracking

slide adapted from Recursive Backtracking by Mike Scott, UT Austin

Backtracking
Start

Success!

Success!

Failure

• Problem space consists of states (nodes) and actions (paths that lead to new

states). When in a node can only see paths to connected nodes

• If a node only leads to failure go back to its "parent” node. Try other alternatives.

If these all lead to failure then more backtracking may be necessary.

55

Example:

A Simple Maze

Search maze until way

out is found. If no way

out possible, report that.

56

The Local View

North

East

West

Behind me, to the South

is a door leading South

Which way do

I go to get

out?

57

Backtracking Algorithm for Maze

 If the current square is outside, return TRUE to indicate that

a solution has been found.

If the current square is marked, return FALSE to indicate that

this path has been tried.

Mark the current square.

for (each of the four compass directions)

{ if (this direction is not blocked by a wall)

 { Move one step in the indicated direction from the

current square.

 Try to solve the maze from there by making a

recursive call.

 If this call shows the maze to be solvable, return

TRUE to indicate that fact.

 }

}

Unmark the current square.

Return FALSE to indicate that none of the four directions led

to a solution.
58

Backtracking in Action

The crucial part of the

algorithm is the for loop

that takes us through the

alternatives from the current

square. Here we have moved

to the North.

for (dir = North; dir <= West; dir++)

{ if (!WallExists(pt, dir))

 {if (SolveMaze(AdjacentPoint(pt, dir)))

 return(TRUE);

}
59

Backtracking in Action

Here we have moved

North again, but there is

a wall to the North .

East is also

blocked, so we try South.

That call discovers that

the square is marked, so

it just returns.

60

So the next move we

can make is West.

Where is this leading?

61

Backtracking in Action

This path reaches

a dead end.

Time to backtrack!

Remember the

program stack!

62

Backtracking in Action

The recursive calls

end and return until

we find

ourselves back here.

63

Backtracking in Action

Recursive Backtracking

And now we try

South

64

Backtracking in Action

Path Eventually Found

65

66

The 8-Queens Problem

Recursive Backtracking

The 8-Queens Problem

A classic chess puzzle

– Place 8 queen pieces on a chess board so that none of them can

attack one another

67

68

69

Complexity Analysis:
 naive (brute force/exhaustive) solution

• One strategy: guess at a solution
• There are 4,426,165,368 ways to arrange 8 queens on a chessboard of 64

squares

• An observation that eliminates many arrangements from
consideration

• No queen can reside in a row or a column that contains another queen
• Now: only 40,320 (8!) arrangements of queens to be checked for attacks along

diagonals

Complexity Analysis

 A possible brute-force algorithm for 8-Queen is to generate the permutations of
the numbers 1 through 8 (of which there are 8! = 40,320),

• and uses the elements of each permutation as indices to place a queen on each row.
• Then it rejects those boards with diagonal attacking positions.

 The backtracking algorithm, is a slight improvement on the permutation
method,

• constructs the search tree by considering one column (or row) of the board at a time,
eliminating most non-solution board positions at a very early stage in their construction.

• Because it rejects column (or row) and diagonal attacks even on incomplete boards, it
examines only 15,720 possible queen placements.

 A further improvement which examines only 5,508 possible queen placements
is to combine the permutation-based method with the early pruning method:

• The permutations are generated depth-first, and the search space is pruned if the partial
permutation produces a diagonal attack

70

The Eight Queens Problem

• A recursive algorithm that places a queen in a column

• Base case
• If there are no more columns to consider

• You are finished

• Recursive step
• If you successfully place a queen in the current column

• Consider the next column
• If you cannot place a queen in the current column

• You need to backtrack

71

Solve the 8-Queens problem via backtracking

• Backtracking:
• A systematic way to make successive guesses at a solution.

• If a particular guess leads to a dead end, you back up to that guess and replace it
with a different guess.

• This strategy of retracing steps in reverse order and then trying a new sequences
of steps is called “backtracking”.

• You can combine recursion and backtracking to solve the problem that follows.

72

73

The backtracking
solution:

Search process

Figure 5-1 (a) Five queens that cannot attack each other, but that can attack all of column 6; (b) backtracking to

column 5 to try another square for the queen; (c) backtracking to column 4 to try another square for the queen and

then considering column 5 again

74

75

Solve Sudoku Puzzle

76

Example

77

A Concrete Example

9 by 9 matrix with

some numbers filled in

all numbers must be

between 1 and 9

Goal: Each row, each

column, and each mini

matrix must contain

the numbers between 1

and 9 once each

– no duplicates in rows, columns,

or mini matrices

78

Solving Sudoku – Brute Force

A brute force algorithm is a

simple but general approach

Try all combinations until

you find one that works

This approach isn’t clever,

but computers are Fast

If not fast enough, try and

improve on the brute force

results

79

Solving Sudoku

Brute force Sudoku Solution

– if not open cells, solved

– scan cells from left to right, top to bottom for first

open cell

– When an open cell is found start cycling through

digits 1 to 9.

– When a digit is placed check that the set up is

legal

– now solve the board

1

80

Solving Sudoku – Later Steps

1 1 2 1 2 4

1 2 4 8 1 2 4 8 9

Oh no !

81

Sudoku – A Dead End
We have reached a dead end in our search

With the current set up none of the nine

digits work in the top right corner

1 2 4 8 9

82

Back track

When the search reaches a dead

end in backs up to the previous

cell it was trying to fill and

goes onto to the next digit

We would back up to the cell with

a 9 and that turns out to be a

dead end as well so we back up

again

– so the algorithm needs to remember what digit to

try next

Now in the cell with the 8. We

try and 9 and move forward again.

1 2 4 8 9

1 2 4 9

83

Key Insight

After trying placing a digit in a cell we want to

solve the new sudoku board

– Isn't that a smaller (or simpler version) of the same problem we

started with?
After placing a number in a cell, we need to remember

the next number to try in case things don't work out.

We need to know if things worked out (found a

solution) or they didn't, and if they didn't, try the

next number

If we try all numbers and none of them work in our

cell we need to report back that things didn't work

84

Recursive Backtracking

Problems such as Suduko can be solved using

recursive backtracking;

recursive because later versions of the

problem are just slightly simpler versions

of the original;

backtracking because we may have to try

different alternatives

85

Recursive Backtracking Algorithm

Pseudo code for recursive backtracking algorithms:

If at a solution, report success

for(every possible choice from current state/node)

 Make that choice and take one step along path

 Use recursion to solve the problem for the new node/state

 If the recursive call succeeds, report the success to the

next high level

 Back out of the current choice to restore the state at the

beginning of the loop.

Report failure

86

87

Timing of the above algorithm on a standard laptop

A challenge: Can you develop a new algorithm that is by ~ 1,000 times fasters (on the same laptop) ?

 (around 20 ms/puzzle)

Boggle words search

88

89

Summary of today’s lecture

• 1. The recursive way of thinking
• Prove the correctness of recursion
• Recursion versus iteration

• 2. Recursion as a problem solving technique
• Solve the Towers of Hanoi puzzle

• 3. Recursive backtracking
• Examples:

• Maze puzzle
• Eight-Queens puzzle
• Sudoku puzzle
• …

90

Take-home exercises: (for self test, not to be assessed)

1. write a recursive java method that writes the digits of a positive decimal integer in reverse
order.

2. Write a recursive method that computes the product of all the items in the array
A[first.. last].

3. Consider a 4-Queens problem, which has the same rules as the 8-Queens problem but uses
a 4x4 chessboard. Find all solutions to this new problem by applying backtracking by hand.

• (continue on the next page…)

91

92

4. Consider the following recursive method:

 public static int p (int x){
 if (x<3) {
 return x;
 }
 else {
 return p(x-1) * p(x-3) ;
 } //end if
 } //end p

Let m(x) be the number of multiplications that the execution of p(x) performs.
a. Write recursive definition of m(x).
b. Prove that your answer to Part a is correct by using mathematical induction.

5. Solve the Sudoku puzzle as shown in the figure in the right, using the Java
recursive algorithm.

6. Solve the one knight tour puzzle on the 8x8 chessboard using backtracking.
(https://en.wikipedia.org/wiki/Knight%27s_tour)

https://en.wikipedia.org/wiki/Knight%27s_tour

93

End of Lecture 7A

	Slide 1: COMP1110/1140/6710 Structured programming Week-7 (A) Recursion Revisited
	Slide 2: Topics for the first half of this semester (H1):
	Slide 3: Topics for the second half of this semester (H2): Core Computer Science & ADT:
	Slide 4: Outline (tentative plan) for 2H of 2024 S2
	Slide 5: A few words about your 2nd convenor/lecturer: Hongdong Li
	Slide 6: This week’s topics
	Slide 7: Recursion Revisited
	Slide 8: Recall: Recursion (the basics)
	Slide 9: Recursion (the basics)
	Slide 10: Learning Objectives
	Slide 11: Quotes about “recursion”
	Slide 12: Recursive Thinking
	Slide 13: Recursive Thinking: Example(1): Factorial function
	Slide 14: Recursive Thinking: Example(2)
	Slide 15: Recursive Thinking: Example (3)
	Slide 16: The General Approach
	Slide 17: Requirements for Recursion
	Slide 18: Recursion Design Strategy
	Slide 19: Recursion Design: Example
	Slide 20: Recursive Design Example: Java code
	Slide 21: Tracing a Recursive Method (1)
	Slide 22: In class Exercise:
	Slide 23: Recall : three “musts” for recursion
	Slide 24: The solution
	Slide 25: How to prove a Recursive Method is correct ?
	Slide 26: Recursion and Mathematical Induction
	Slide 27: Proving the correctness by Mathematical Induction
	Slide 28: Recursive Definition of some mathematical functions
	Slide 29: Factorial (, once again)
	Slide 30: Prove the Correctness of the Recursive Factorial
	Slide 31: Power function
	Slide 32
	Slide 33: Problem Solving with Recursion
	Slide 34: Towers of Hanoi: Description
	Slide 35: Towers of Hanoi
	Slide 36: How to solve this puzzle ?
	Slide 37: Example of 4 disks
	Slide 38: A Recursive Solution Strategy
	Slide 39: Towers of Hanoi: Recursion Structure
	Slide 40: Towers of Hanoi: Java Code
	Slide 41: Performance Analysis: a primitive example of “computational complexity analysis”
	Slide 42: A formal proof of time complexity
	Slide 43: Time-complexity when n= 64
	Slide 44: Recursion versus Iteration
	Slide 45: Recursive versus Iterative Methods
	Slide 46: Tail Recursion  Iteration
	Slide 47: Efficiency of Recursion
	Slide 48: So When Should You Use Recursion?
	Slide 49: A preview:
	Slide 50: Recap: recursion
	Slide 51: 5-minute break
	Slide 52: Backtracking for games
	Slide 53: Backtracking technique
	Slide 54: Backtracking technique (Cont.)
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Complexity Analysis: naive (brute force/exhaustive) solution
	Slide 70: Complexity Analysis
	Slide 71: The Eight Queens Problem
	Slide 72: Solve the 8-Queens problem via backtracking
	Slide 73: The backtracking solution:
	Slide 74: Search process
	Slide 75
	Slide 76: Solve Sudoku Puzzle
	Slide 77: Example
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Boggle words search
	Slide 89
	Slide 90: Summary of today’s lecture
	Slide 91: Take-home exercises: (for self test, not to be assessed)
	Slide 92
	Slide 93

