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• Java language features

• Object-Oriented programming 

• Code Development & Software 
Engineering 
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Topics for the first half of this semester (H1):

          



Topics for the second half of this semester (H2):

            Core Computer Science  & ADT: 
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Outline (tentative plan) for 2H of 2024 S2
• Week-7:  (HL) 

• Recursion revisited (deep dive) 
• Backtracking technique
• (optional) Java: multi-thread (TBC) 
• Complexity Analysis and Big-O notation

• Week-8:  (HL) 
• ADT :  Basic Concepts
• ADT  List,  and list Implementations
• Array and Linked-list 

• Week-9: (PH) 
• ADT: trees
• Binary search trees
• ADT: set and map 
• Java: files

• Week-10: (PH) 
• ADT: Hash table, hash set 
• Hash code and hash function
• Hash applications
• Software system development. 

• Week-11:   (HL) 
• ADT: graph data structure 
• Graph traversal (DPS, BFS, A* ) 
• Graph algorithms  ( MST,  minimal path,  TSP,  max-flow min-

cut).

• Week-12: Class Review  (PH) 4



A few words about your 2nd convenor/lecturer: Hongdong Li 

• https://scholar.google.com/citations?u
ser=Mq89JAcAAAAJ&hl=en

• CSRanking:  
• https://csrankings.org/#/fromyear/200

6/toyear/2024/index?vision&au
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This week’s topics

• (A):   Recursion revisited (deep dive) 

• (B) : [Optional] Java: multi-threads and parallel programming 

• (C) :  Computational Complexity 
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Recursion Revisited 
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Recall: 
        Recursion (the basics) 
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Recursion (the basics) 
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Learning Objectives 

• Thinking recursively

• Tracing execution of a recursive method

• Writing recursive algorithms

• Recursive data structures
• E.g.  LinkedList,  tree,  etc. 



Quotes about “recursion”

• “To iterate is human, to recurse, divine.”
    L. Peter Deutsch, computer scientist, or 
                                                    Robert Heller, computer scientist, or ...

•  “Mastering the recursive way of thinking is what separates a Computer 
Scientist from all other people who also know computer programming. ”  
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Recursive Thinking

• Recursion is:

• A problem-solving approach, that can ...
• Generate simple solutions to ...
• Certain kinds of problems that ...
• Would be difficult to solve in other ways

• Recursion splits a problem:
• Into one or more simpler versions of itself
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Recursive Thinking:  Example(1):
                                Factorial function 
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Recursive Thinking:  Example(2) 

Strategy for processing nested dolls: (Matryoshka dolls)

1. if there is only one doll
2.       do what it needed for it
     else
3.       do what is needed for the outer doll
4.       Process the inner nest in the same way
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Recursive Thinking:  Example (3)

Strategy for binary searching a sorted array or list:
1. if the array is empty
2.       return -1 as the search result (not present)
3. else if the middle element == target
4.       return the index  of the middle element
5. else if target < middle element
6.       recursively search elements before middle point
7. else
8.       recursively search elements after the middle point
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The General Approach

1. if problem is “small enough” and can be solved directly,  
i.e. the base case problem

2.       solve it directly
3. else
4.       break into one or more smaller subproblems
5.       solve each subproblem recursively
6.       combine results into solution to whole problem
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Requirements for Recursion

• At least one “small enough” base case that you can solve 
directly

• A way of breaking a larger problem down into:
• One or more smaller subproblems
• Each of the same kind as the original

• A way of combining subproblem results into an overall 
solution to the larger problem
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Recursion Design Strategy

• Identify the base case(s)   (for direct solution)

• Devise a problem splitting strategy
• Subproblems must be smaller
• Subproblems must work towards a base case

• Devise a solution combining strategy
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Recursion Design:  Example

Recursive algorithm for finding the length of a string:

1. if string is empty (no characters)
2.       return 0       base case
3. else    recursive case
4.       compute length of string without the first character
5.       return 1 + that length

Note: Not the best technique for this problem. 
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Recursive Design Example: Java code

Recursive algorithm for finding the length of a string:

public static int length (String str) {

  if (str == null ||

      str.equals(“”))

    return 0;

  else

    return length(str.substring(1)) + 1;

}
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Tracing a Recursive Method (1)

length(“ace”)

return 1 + length(“ce”)

return 1 + length(“e”)

return 1 + length(“”)

0

1

2

3

Overall 
result



In class Exercise: 
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Recall : three “musts” for recursion 
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The solution
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How to prove a Recursive Method is correct ? 

Recursive proof is similar to math. induction:

1. Show base case recognized and solved correctly

2. Show that
• If all smaller problems are solved correctly,
• Then original problem is also solved correctly

3. Show that each recursive case makes progress towards the 
base case  terminates properly
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Recursion and Mathematical Induction

• Recursion and mathematical induction 
• Both use a base case to solve a problem
• Both solve smaller problems of the same type to derive a solution 

• Induction can be used to
• Prove properties about recursive algorithms
• Prove that a recursive algorithm performs a certain amount of work
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Proving the correctness by Mathematical Induction

1. Prove the theorem for the base case(s): n=0

2. Show that:

• If the theorem is assumed true for n,
• Then it must be true for n+1

Result: Theorem true for all n ≥ 0.
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Recursive Definition of some mathematical functions

• Mathematicians often use recursive definitions

• These lead very naturally to recursive programs

• Examples include:

• Factorial
• Power
• GCD (Greatest common divisor)
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Factorial (, once again)

• 0! = 1
• n! = n x (n-1)!

• If a recursive function never reaches its base case, a 
stack overflow error occurs



Prove the Correctness of the Recursive Factorial

• Pseudocode for recursive factorial 
 if (n is 0)

     return 1

 else 

     return n * fact(n – 1)  

• Induction on n proves the return values:
• fact(0) = 0! = 1

• fact(n) = n!= n*(n – 1)* 

           (n – 2)*…* 1 if n > 0

Based on Mathematical Induction 

30



31

Power function

• x0 = 1
• xn = x  xn-1 

public static double power

    (double x, int n) {

  if (n <= 0)  // or: throw exc. if < 0

    return 1;

  else

    return x * power(x, n-1);

}



Problem Solving with Recursion
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Problem Solving with Recursion

• Towers of Hanoi
• Backtracking

• Maze puzzle 
• 8-Queens puzzle
• Sudoku puzzle
• … 



Towers of Hanoi: Description
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Towers of Hanoi

• The ancient folklore :

“In the great temple at Benares, says he, beneath the dome which marks the centre of the 
world, rests a brass plate in which are fixed three diamond needles, each a cubit high and 
as thick as the body of a bee. On one of these needles, at the creation, God placed sixty-
four discs of pure gold, the largest disc resting on the brass plate, and the others getting 
smaller and smaller up to the top one. This is the Tower of Bramah. Day and night 
unceasingly the priests transfer the discs from one diamond needle to another according 
to the fixed and immutable laws of Bramah, which require that the priest on duty must not 
move more than one disc at a time and that he must place this disc on a needle so that 
there is no smaller disc below it. When the sixty-four discs shall have been thus 
transferred from the needle on which at the creation God placed them to one of the other 
needles, tower, temple, and Brahmins alike will crumble into dust, and with a thunderclap 
the world will vanish.''
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How to solve this puzzle ? 
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Example of 4 disks
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      A Recursive Solution Strategy
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Towers of Hanoi: 
               
         Recursion Structure
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Towers of Hanoi: 
                 
             Java Code

public class TowersOfHanoi {

  public static String showMoves(int n,
      char src, char dst, char tmp) {

    if (n == 1)
      return “Move disk 1 from “ + src +
             “ to “ + dst + “\n”;

    else return

      showMoves(n-1, src, tmp, dst) +
      “Move disk “ + n + “ from “ + src +
        “ to “ + dst + “\n” +
      showMoves(n-1, tmp, dst, src);
  }
}
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Performance Analysis: 
                    a primitive example of “computational complexity analysis”

How many steps required to solve the Hanoi tower of size n?

We’ll just count lines; call this T(n).
• For n = 1, one line: T(1) = 1
• For n > 1, one line plus twice T(n) for next smaller size:

T(n+1) = 2 x T(n) + 1

Solving this gives T(n) = 2n – 1 = O(2n)



A formal proof of time complexity  
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Time-complexity when n= 64

• 2^64-1 = ? 

• If one can precisely make one move per second by hands,  it will take 
about 580 trillion years to succeed.  

• Age of our universe: the universe is estimated to be 13.7 billion years 
old.

43

Warning:   Don’t even try this for very large n  (say n= 64) on a 
computer ;   you will do a lot of string concatenation and garbage 
collection, and then run out of computer memory and may crash 
your computer ! 
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Recursion versus Iteration

• Recursion and iteration are similar
• Iteration:

• Loop repetition test determines whether to exit
• Recursion:

• Condition tests for a base case 
• Can always write iterative solution to a problem solved 

recursively, but:
• Recursive code often simpler than iterative

• Thus, is easier to write, read, and understand. 
• However, the memory complexity can be huge ( may use up 

func call stack very quickly.)



Recursive versus Iterative Methods

All recursive algorithms/methods

can be rewritten without recursion.

• Iterative methods use loops instead of recursion

• Iterative methods generally run faster and use less memory--less 
overhead in keeping track of method calls
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Tail Recursion → Iteration

When recursion involves single call that is at the end ...
It is called tail recursion and it easy to make iterative:

public static int iterFact (int n) {

  int result = 1;

  for (int k = 1; k <= n; k++) {

    result = result * k;

  }

  return result;

}
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Efficiency of Recursion

• Recursive method often slower than iterative; why?
• Overhead for loop repetition smaller than
• Overhead for function call and return

• If easier to develop algorithm using recursion,
• Then code it as a recursive method:
• Software engineering benefit probably outweighs ...
• Reduction in efficiency

• Don’t “optimize” prematurely!



So When Should You Use Recursion?

• Solutions/algorithms for some problems are inherently recursive

• iterative implementation could be more complicated

• When efficiency is less important

• it might make the code easier to understand

• Bottom line is about:

• Algorithm design

• Tradeoff between readability and efficiency
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A preview: 

Next week,  we will try to solve the “Towers of Hanoi” puzzle with 
iteration, and analyze their computational complexity. 
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Recap: recursion
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5-minute break 
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Backtracking for games
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Backtracking technique 
• Backtracking:   A systematic trial-and-error search for solve a complex 

problem
• Examples: 

• Finding a path through a maze
• Board game  (Chess, Go,..)
• Sudoku puzzle 
• … 

• For example, in walking through a maze, probably walk a path as far as 
you can go

• Eventually, reach destination or  a dead end
• If dead end, must retrace your steps
• Loops: stop when reach place you’ve been before

• Backtracking systematically tries alternative paths and eliminates 
them if they don’t work
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Backtracking technique (Cont.)

• If you never try exact same path more than once, and
• You try all possibilities,
• You will eventually find a solution if one exists

• Problems solved by backtracking:  a set of choices

• Recursion implements backtracking straightforwardly
• Activation frame remembers choice made at that  decision point

• A chess playing program likely involves backtracking



slide adapted from Recursive Backtracking by Mike Scott, UT Austin

Backtracking
Start

Success!

Success!

Failure

• Problem space consists of states (nodes) and actions (paths that lead to new 

states). When in a node can only see paths to connected nodes

• If a node only leads to failure go back to its "parent” node. Try other alternatives. 

If these all lead to failure then more backtracking may be necessary.
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Example: 

A Simple Maze

Search maze until way

out is found. If no way

out possible, report that.
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The Local View

North

East

West

Behind me, to the South 

is a door leading South

Which way do

I go to get

out?
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Backtracking Algorithm for Maze

 If the current square is outside, return TRUE to indicate that 

a solution has been found.

If the current square is marked, return FALSE to indicate that 

this path has been tried.

Mark the current square.

for (each of the four compass directions) 

{ if ( this direction is not blocked by a wall ) 

 { Move one step in the indicated direction from the 

current square.

  Try to solve the maze from there by making a 

recursive call.

  If this call shows the maze to be solvable, return 

TRUE to indicate that fact.

 }

}

Unmark the current square.

Return FALSE to indicate that none of the four directions led 

to a solution. 
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Backtracking in Action

The crucial part of the 

algorithm is the for loop 

that takes us through the 

alternatives from the current 

square. Here we have moved 

to the North.

for (dir = North; dir <= West; dir++)

{ if (!WallExists(pt, dir)) 

 {if (SolveMaze(AdjacentPoint(pt, dir)))

  return(TRUE);

} 
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Backtracking in Action

Here we have moved 

North again, but there is

a wall to the North .

East is also

blocked, so we try South. 

That call discovers that

the square is marked, so 

it just returns.
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So the next move we 

can make is West.

Where is this leading?

61

Backtracking in Action



This path reaches 

a dead end. 

Time to backtrack!

Remember the

program stack! 
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Backtracking in Action



The recursive calls 

end and return until 

we find 

ourselves back here. 
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Backtracking in Action



Recursive Backtracking

And now we try

South
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Backtracking in Action



Path Eventually Found
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The 8-Queens Problem



Recursive Backtracking

The 8-Queens Problem

A classic chess puzzle

– Place 8 queen pieces on a chess board so that none of them can 

attack one another
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Complexity Analysis: 
          naive (brute force/exhaustive) solution

• One strategy: guess at a solution
• There are 4,426,165,368 ways to arrange 8 queens on a chessboard of 64 

squares

• An observation that eliminates many arrangements from 
consideration

• No queen can reside in a row or a column that contains another queen
• Now: only 40,320 (8!) arrangements of queens to be checked for attacks along 

diagonals



Complexity Analysis

 A possible brute-force algorithm for 8-Queen is to generate the permutations of 
the numbers 1 through 8 (of which there are 8! = 40,320), 

• and uses the elements of each permutation as indices to place a queen on each row. 
• Then it rejects those boards with diagonal attacking positions. 

 The backtracking algorithm, is a slight improvement on the permutation 
method, 

• constructs the search tree by considering one column (or row) of the board at a time, 
eliminating most non-solution board positions at a very early stage in their construction. 

• Because it rejects column (or row) and diagonal attacks even on incomplete boards, it 
examines only 15,720 possible queen placements. 

 A further improvement which examines only 5,508 possible queen placements 
is to combine the permutation-based method with the early pruning method: 

• The permutations are generated depth-first, and the search space is pruned if the partial 
permutation produces a diagonal attack
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The Eight Queens Problem

• A recursive algorithm that places a queen in a column

• Base case
• If there are no more columns to consider

• You are finished

• Recursive step
• If you successfully place a queen in the current column

• Consider the next column
• If you cannot place a queen in the current column

• You need to backtrack
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Solve the 8-Queens problem via backtracking

• Backtracking: 
• A systematic way to make successive guesses at a solution. 

•  If a particular guess leads to a dead end, you back up to that guess and replace it 
with a different guess.    

• This strategy of retracing steps in reverse order and then trying a new sequences 
of steps is called  “backtracking”. 

• You can combine recursion and backtracking to solve the problem that follows. 
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The backtracking 
solution: 



Search process 

Figure 5-1 (a) Five queens that cannot attack each other, but that can attack all of column 6; (b) backtracking to 

column 5 to try another square for the queen; (c) backtracking to column 4 to try another square for the queen and 

then considering column 5 again
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Solve Sudoku Puzzle 
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Example 

77



A Concrete Example

9 by 9 matrix with 

some numbers filled in

all numbers must be 

between 1 and 9

Goal: Each row, each 

column, and each mini 

matrix must contain 

the numbers between 1 

and 9 once each

– no duplicates in rows, columns, 

or mini matrices
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Solving Sudoku – Brute Force

A brute force algorithm is a 

simple but general approach

Try all combinations until 

you find one that works

This approach isn’t clever, 

but computers are Fast

If not fast enough, try and 

improve on the brute force 

results
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Solving Sudoku

Brute force Sudoku Solution

– if not open cells, solved

– scan cells from left to right, top to bottom for first 

open cell

– When an open cell is found start cycling through 

digits 1 to 9. 

– When a digit is placed check that the set up is 

legal

– now solve the board

1
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Solving Sudoku – Later Steps

1 1 2 1 2 4

1 2 4 8 1 2 4 8 9

Oh no !
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Sudoku – A Dead End
We have reached a dead end in our search

With the current set up none of the nine 

digits work in the top right corner

1 2 4 8 9
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Back track

When the search reaches a dead 

end in backs up to the previous 

cell it was trying to fill and 

goes onto to the next digit

We would back up to the cell with 

a 9 and that turns out to be a 

dead end as well so we back up 

again

– so the algorithm needs to remember what digit to 

try next

Now in the cell with the 8. We 

try and 9 and move forward again.

1 2 4 8 9

1 2 4 9
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Key Insight

After trying placing a digit in a cell we want to 

solve the new sudoku board

– Isn't that a smaller (or simpler version) of the same problem we 

started with? 
After placing a number in a cell, we need to remember 

the next number to try in case things don't work out.

We need to know if things worked out (found a 

solution) or they didn't, and if they didn't, try the 

next number

If we try all numbers and none of them work in our 

cell we need to report back that things didn't work
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Recursive Backtracking

Problems such as Suduko can be solved using 

recursive backtracking;

recursive because later versions of the 

problem are just slightly simpler versions 

of the original;

backtracking because we may have to try 

different alternatives
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Recursive Backtracking Algorithm

Pseudo code for recursive backtracking algorithms:  

If at a solution, report success

for(every possible choice from current state/node)

 Make that choice and take one step along path

 Use recursion to solve the problem for the new node/state

 If the recursive call succeeds, report the success to the 

next high level

 Back out of the current choice to restore the state at the 

beginning of the loop.

Report failure
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Timing of the above algorithm on a standard laptop 

A challenge:   Can you develop a new algorithm that is by ~ 1,000  times fasters (on the same laptop) ?    

                        (around  20 ms/puzzle)   



Boggle words search 
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Summary of today’s lecture

• 1. The recursive way of thinking
• Prove the correctness of recursion
• Recursion versus iteration

• 2.  Recursion as a problem solving technique
• Solve the Towers of Hanoi puzzle

• 3. Recursive backtracking
• Examples:    

• Maze puzzle
• Eight-Queens puzzle
• Sudoku puzzle 
• …
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Take-home exercises:  (for self test, not to be assessed) 

1. write a recursive java method that writes the digits of a positive decimal integer in reverse 
order. 

2. Write a recursive method that computes the product of all the items in the array 
A[first.. last]. 

3. Consider a 4-Queens problem, which has the same rules as the 8-Queens problem but uses 
a 4x4 chessboard. Find all solutions to this new problem by applying backtracking by hand.

• (continue on the next page…)
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4. Consider the following recursive method:

 public static int p (int x){ 
  if (x<3) {
           return x;
   } 
 else {
         return p(x-1) * p(x-3) ;
           } //end if
  } //end p 

Let m(x) be the number of multiplications that the execution of p(x) performs. 
a. Write  recursive definition of m(x).
b. Prove that your answer to Part a is correct by using mathematical induction.  

5. Solve the Sudoku puzzle as shown in the figure in the right,  using the Java 
recursive algorithm.

6. Solve the one knight tour puzzle on the 8x8 chessboard using backtracking.
( https://en.wikipedia.org/wiki/Knight%27s_tour ) 

https://en.wikipedia.org/wiki/Knight%27s_tour
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End of Lecture 7A 
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