COMP1110/1140/6710
Structured programming

Week-7 (A)

Recursion Revisited

16-Sept-2024

Topics for the first half of this semester (H1):

* Java language features

* Object-Oriented programming

* Code Development & Software
Engineering

J: Java

J1 Introductory Java, part 1 Q@ O@

J2 Introductory Java, part 2) Q)

J3 Arrays Q@O@
J5 Control Flow: Branching Q@O@
J6 Control Flow: Iteration Q@O@

JO Higher-order programming QO@

J12 Generics Q@O@
J14 Collections Q@O@
J15 Exceptions QO@

O: Object Orientation

O1 Objects and Classes, part 1 Q@O@

02 Objects and Classes, part 2 Q@O@

04 Inheritance Q@ O @

S: Software Engineering #

S1 Software Development Tools Q O @

S4 Unit testing QO@

S5 Software Design Q@

Topics for the second half of this semester (H2):

Core Computer Science & ADT:

C: Core Computer Science

C1 Recursion QOB

C2
C3
C4
C5
C6
C7

Computational Complexity Q
Graph Traversal)&

Hash Functions) Q)

Hashing Applications) Q)

Files Q)
Threads QS

A: Abstract Data Types

Al ADTs:Lists QS

A2
A3
A4
A5
A6

List Implementations

Sets QOB
Sets: HashSet) Q)
Trees OB
Maps QO S

Outline (tentative plan) for 2H of 2024 S2

Week-7: (HL)
Recursion revisited (deep dive)
Backtracking technique
(optional) Java: multi-thread (TBC)
Complexity Analysis and Big-O notation

Week-8: (HL)
ADT: Basic Concepts
ADT List, and listImplementations
Array and Linked-list

Week-9: (PH)
ADT: trees
Binary search trees
ADT: set and map
Java:files

Week-10: (PH)
* ADT: Hash table, hash set
Hash code and hash function
Hash applications
* Software system development.

Week-11: (HL)
ADT: graph data structure
Graph traversal (DPS, BFS, A*)

Graph algorithms (MST, minimal path, TSP, max-flow min-

cut).

Week-12: Class Review (PH)

C1 Recursion QOB
C7 Threads O S

C2 Computational Complexity)

Al ADTs:Lists QB

A2 List Implementations Q

A3 Sets QOB

A4 Sets:HashSet)

A5 Trees QOB
A6 Maps QO D

C4 Hash Functions Q)
C5 Hashing Applications Q

C6 Files QO

C3 Graph Traversal &

A few words about your 2nd convenor/lecturer: Hongdong Li

* https://scholar.google.com/citations?u

ser=Mg89JAcAAAAJ&hl=en

* CSRanking:

Hongdong Li

Professor of Computer Vision and Learning, Australian National University
Verified email at anu.edu.au - Homepage

Computer Vision Machine Learning VR/AR Artificial Intelligence Pattern Recognition

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a triangle (») to expand areas or institutions. Click on a name to go to
faculty member's home page. Click on a chart icon (the yly after a name or institution) to see the distribution of their publication areas as a bar chart @. Click on a Google
Scholar icon () to see publications, and click on the DBLP logo (») to go to a DBLP entry. Applying to grad school? Read this first. For info on grad stipends, check out
CSStipendRankings.org. Do you find C! i useful? Sp C! on GitHub.

Rank institutions in Australia @ by publications from 2006 @ to 2024 B

* https://csrankings.org/#/fromyear/200 s orion -

6/toyear/2024/index?vision&au

1 » University of Adelaide & ilu 86.9 13
Al [off | on]
o . 2 V¥ Australian National University & il 74.2 11
» Artificial intelligence ey T A
o -aculty ubs Bj.
> Computer VISI?n Hongdong Li vision # & lili 88 2741
» Machine learning
» Natural language processing Stephen Gould vision # &9 » il 45 129
» The Web & information retrieval Liang Zheng 0001 vision # £3 % il 45 115

5

https://scholar.google.com/citations?user=Mq89JAcAAAAJ&hl=en
https://scholar.google.com/citations?user=Mq89JAcAAAAJ&hl=en
https://csrankings.org/
https://csrankings.org/

This week’s topics

* (A): Recursion revisited (deep dive)
* (B) : [Optional] Java: multi-threads and parallel programming

* (C) : Computational Complexity

Recursion Revisited

Recall:
Recursion (the basics)

* “...embedding an
expression of some
type within an
expression of the
same type”
(linguistics)

(Alf van Beem, CCO, via Wikimedia Commons)

Recursion (the basics)

The body of a function can contain function
calls, including calls to the same function.

e This is known as

The function must have a branching statement,
such that a recursive call does not always take
place (“base case”); otherwise, recursion never
ends.

Recursion is a way to think about solving a
problem: how to reduce it to a simpler instance
of itself?

Learning Objectives

* Thinking recursively

* Tracing execution of a recursive method

* Writing recursive algorithms

e Recursive data structures
 E.g. LinkedList, tree, etc.

10

Quotes about “recursion”

e “To iterate iIs human, to recurse, divine.”
L. Peter Deutsch, computer scientist, or
Robert Heller, computer scientist, or ...

» “Mastering the recursive way of thinking is what separates a Computer
Scientist from all other people who also know computer programming. ”

11

Recursive Thinking

e Recursion is:

* A problem-solving approach, that can ...
* Generate simple solutionsto...

e Certain kinds of problems that ...

* Would be difficult to solve in other ways

* Recursion splits a problem:
* [nto one or more simpler versions of itself

12

Recursive Thinking: Example(1):

Factorial function
» Compute

f(n) = nx(n—1)*(n—

= nxf(n—1)
Base case: static int
if (n ==
f(1) — 1 return

else
return

2) % ...%1

f(int n) {
1)
1,

n *x f(n-1);

13

Recursive Thinking: Example(2)

Strategy for processing nested dolls: (Matryoshka dolls)

1. ifthereis only one doll
2. do what it needed for it

else
3. do what is needed for the outer doll
4. Process the inner nestin the same way

FIGURE 7.1
A Set of Mested Wooden Figures

14

Recursive Thinking: Example (3)

Strategy for binary searching a sorted array or list:
If the array is empty
return -1 as the search result (not present)
else if the middle element == target
return the index of the middle element
else if target < middle element
recursively search elements before middle point
else

©® N o o kb=

recursively search elements after the middle point

15

The General Approach

1.

L

If problem is “small enough” and can be solved directly,
I.e. the base case problem

solve it directly
else
break into one or more smaller subproblems

solve each subproblem recursively

combine results into solution to whole problem

16

Requirements for Recursion

« Atleastone “smallenough” base case that you can solve
directly

* Awayof breaking a larger problem down into:
. One or more smaller subproblems
. Each of the same kind as the original

* Awayofcombining subproblem results into an overall
solution to the larger problem

1. Your code must have a case for all valid inputs

2. You must have a base case that makes no
recursive calls

3. When you make a recursive call it should be to a
simpler instance and make forward progress
towards the base case.

17

Recursion Design Strategy

* |dentify the base case(s) (for direct solution)

* Devise a problem splitting strategy
e Subproblems must be smaller
e Subproblems must work towards a base case

* Devise a solution combining strategy

18

Recursion Design: Example

Recursive algorithm for finding the length of a string:

1. if string is empty (no characters)
2 return0 < base case

3. else < recursive case
4
)

compute length of string without the first character
return 1 + that length

Note: Not the best technique for this problem.

19

Recursive Design Example: Java code
Recursive algorithm for finding the length of a string:

public static int length (String str) {
if (str == null ||
str.equals (V"))
return O;
else
return length(str.substring(l)) + 1;

20

Tracing a Recursive Method (1)

21

In class Exercise:

Write a recursive function isPalindrome accepts a string and
returns true If it reads the same forwards as backwards.

isPalindrome("madam") - true
isPalindrome("racecar") - true
isPalindrome("step on no pets") - true
isPalindrome('"Java") - false
isPalindrome('"byebye") -false

Recall : three “musts” for recursion

1. Your code must have a case for all valid inputs

2. You must have a base case that makes no
recursive calls

3. When you make a recursive call it should be to a
simpler instance and make forward progress
towards the base case.

23

The solution

// Returns true if the given string reads the same
// forwards as backwards.
// Trivially true for empty or 1-letter strings.
bool isPalindrome(const string& s) {
if (s.length() < 2) { // base case
return true;
} else { // recursive case
if (s[@] '= s[s.length() - 1]) {
return false;
+

string middle = s.substr(1, s.length() - 2);
return isPalindrome(middle);

24

How to prove a Recursive Method is correct ?

Recursive proofis similar to math. induction:

1. Show base case recognized and solved correctly

2. Show that
 Ifall smaller problems are solved correctly,
* Then original problem is also solved correctly

3. Show that each recursive case makes progress towards the
base case € terminates properly

25

Recursion and Mathematical Induction

* Recursion and mathematical induction
* Both use a base case to solve a problem
* Both solve smaller problems of the same type to derive a solution

 Induction can be used to

* Prove properties about recursive algorithms
* Prove that a recursive algorithm performs a certain amount of work

26

Proving the correctness by Mathematical Induction

1. Prove the theorem for the base case(s): n=0

2. Show that:

* Jfthe theorem is assumed true for n,
e Then it mustbe true for n+1

Result: Theorem true for alln = 0.

27

Recursive Definition of some mathematical functions

e Mathematicians often use recursive definitions

* These lead very naturally to recursive programs

* Examples include:

* Factorial
* Power
* GCD (Greatest common divisor)

28

Factorial (, once again)

e 0! =1
*n!'=nx(n-1)!

public static int factorial (int n) {

if (n == 0) // or: throw exc. if < 0
return 1;
else

return n * factorial(n-1);

}

* |[f a recursive function never reaches its base case, a
stack overflow error occurs

29

Prove the Correctness of the Recursive Factorial

e Pseudocode for recursive factorial
if (n is 0)

return 1
else
return n * fact(n - 1)
* Induction on n proves the return values:
e fact(0) = 0! =1
« fact(n) = n!= n*(n - 1)*

(n — 2)*.*x 1 1f n > 0

Based on Mathematical Induction

30

Power function

0X0=1

o X" =xx X"

public static double power
(double x, int n) {
if (n <= 0) // or: throw exc.
return 1;
else
return x * power(x, n-1);

if <0

31

Problem Solving with Recursion

32

Problem Solving with Recursion

FIGURE 7.11
Childrens Version of Towsers of Hanoi

e Towers of Hanoi

* Backtracking
* Maze puzzle
* 8-Queens puzzle
* Sudoku puzzle

N W~

One solution to the eight queens puzzle

33

Towers of Hanoi: Description

(from An introduction to Algorithms and Data Structures, J. A. Storer, Springer, 2002)

=

i —
A B C

Problem: You are given three posts labeled A, B, and C.

On Post A there are n rings of different sizes, in the order of the largest ring on the
bottom to the smallest one on top.

Posts B and C are empty.

The object is to move the n rings from Post A to Post B by successively moving a
ring from one post to another post that is empty or has a larger diameter ring on top.
34

Towers of Hanol

e The ancient folklore:

“In the greattemple at Benares, says he, beneath the dome which marks the centre of the
world, rests a brass plate in which are fixed three diamond needles, each a cubit high and
as thick as the body of a bee. On one ofthese needles, at the creation, God placed sixty-
four discs of pure gold, the largest disc resting on the brass plate, and the others getting
smaller and smaller up to the top one. This is the Tower of Bramah. Day and night
unceasingly the priests transfer the discs from one diamond needle to another according
to the fixed and immutable laws of Bramah, which require that the priest on duty must not
move more than one disc at a time and that he must place this disc on a needle so that
there is no smaller disc below it. When the sixty-four discs shall have been thus
transferred from the needle on which at the creation God placed them to one of the other
needles, tower, temple, and Brahmins alike will crumble into dust, and with a thunderclap
the world will vanish."

35

How to solve this puzzle ?

Move all the disks from peg A to peg B

Figure 55.1

36

Example of 4 disks

37

A Recursive Solution Strategy

FIGURE 7.14
Toswers of Harcdi After the First Two Steps in Sclution of the Four-Disk Problem

SN
— —

Towers of Hanoi:

Recursion Structure

procedure: panoi (n, A, B)
ifn=1
then move disk from A to B
else hanoi (n— 1, AC
move disk from Ato B
panoi (n— 1, C, B)

Move all the disks from peg A to peg B

Figure 55.1

39

Towers of Hanoi:

Java Code

public class TowersOfHanoi ({

public static String showMoves (int n,
char src, char dst, char tmp) {

if (n == 1)
return “Move disk 1 from “ + src +
“to ™ + dst + “\n”;

else return

showMoves (n-1, src, tmp, dst) +

“Move disk “ + n + Y from “ + src +
“to ™ + dst + “\n” +

showMoves (n-1, tmp, dst, src);

40

Performance Analysis:
a primitive example of “computational complexity analysis”

How many steps required to solve the Hanoi tower of size n?

We’ll just count lines; call this T(n).
* Forn=1,o0neline: T(1) =1

* Forn>1, one line plus twice T(n) for next smaller size:
T(n+1)=2xT(n) +1

Solving this gives T(n) =2"-1 = 0O(2")

41

A formal proof of time complexity

Recurrence relation for the number of moves: For n=1, the two calls for n—1 do
nothing and exactly one move is made. For n>1, twice whatever the number of moves
required for n—1 are made plus the move made by the write statement. Hence, the number
of moves made by TOWER on input # is:

lifn=1

Tin)= {2 T(n—1)+1 otherwise

Theorem: For n 2 1, TOWER(n,x,y,z) makes 2"—1 moves.
Proof:
For n=1:
T(1) =1=2'-1
Now assume that TOWER works correctly for all values in the range O to n—1. Then:
T(n)=2T(n-1)+1
=22" "' -1)+1
=2" -1 42

Time-complexity when n= 64
¢ 2764-1="7

* If one can precisely make one move per second by hands, it will take
about 580 trillion years to succeed.

* Age of our universe: the universe Is estimated to be 13.7 billion years
old.

Warning: Don’t even try this for very large n (say n=64) on a
computer; you will do a lot of string concatenation and garbage

collection, and then run out of computer memory and may crash
your computer!

43

Recursion versus lteration

e Recursion and iteration are similar

* Iteration:
* Loop repetition test determines whether to exit

e Recursion:
e Condition tests for a base case

* Can always write iterative solution to a problem solved
recursively, but:

* Recursive code often simpler than iterative
* Thus, is easier to write, read, and understand.

* However, the memory complexity can be huge (may use up
func call stack very quickly.)

44

Recursive versus lterative Methods

All recursive algorithms/methods
can be rewritten without recursion.

* |[terative methods use loops instead of recursion

* [terative methods generally run faster and use less memory--less
overhead in keeping track of method calls

45

Tail Recursion = lteration

When recursion involves single callthat is at the end ...

Itis called tail recursion and it easy to make iterative:

public static int iterFact (int n) {
int result = 1;
for (int k = 1; k <= n; k++) {
result = result * k;

}

return result;

}

46

Efficiency of Recursion

* Recursive method often slower than iterative; why?
* Overhead for loop repetition smaller than
* Overhead for function call and return

* |f easier to develop algorithm using recursion,
* Then code it as a recursive method:
* Software engineering benefit probably outweighs ...
* Reduction in efficiency

* Don’t “optimize” prematurely!

47

So When Should You Use Recursion?

 Solutions/algorithms for some problems are inherently recursive
* iterative implementation could be more complicated

* When efficiency is less important
* it might make the code easier to understand

« Bottom line is about:
 Algorithm design
» Tradeoff between readability and efficiency

48

A preview:

Next week, we will try to solve the “Towers of Hanoi” puzzle with
iteration, and analyze their computational complexity.

49

Recap: recursion

‘Recursion
eBreak a problem into smaller subproblems of the same form, and call the same
function again on that smaller form.
eSuper powerful programming tool
eNot always the perfect choice, but often a good one
eSome beautiful problems are solved recursively

*Three Musts for Recursion:
1.Your code must have a case for all valid inputs
2.You must have a base case that makes no recursive calls
3.When you make a recursive call it should be to a simpler instance and make
forward progress towards the base case.

50

5-minute break

51

Backtracking for games

M~ ™

4 7

1

3|6

3

6

< @

One solution to the eight queens puzzle

52

Backtracking technique

* Backtracking: A systematic trial-and-error search for solve a complex
problem
* Examples:

Finding a path through a maze
Board game (Chess, Go,..)
Sudoku puzzle

* For example, in walking through a maze, probably walk a path as far as
you can go
* Eventually, reach destination or a dead end
* |f dead end, must retrace your steps
* Loops: stop when reach place you’ve been before

* Backtracking systematically tries alternative paths and eliminates
them if they don’t work

53

Backtracking technique (Cont.)

* |f you never try exact same path more than once, and
* You try all possibilities,
* You will eventually find a solution if one exists

* Problems solved by backtracking: a set of choices

* Recursion implements backtracking straightforwardly
* Activation frame remembers choice made at that decision point

* A chess playing program likely involves backtracking

54

Backtracking

St&M
® Q\Su?cess!
\' &
O

Failure

* Problem space consists of states (nodes) and actions (paths that lead to new
states). When in a node can only see paths to connected nodes

 If a node only leads to failure go back to its "parent” node. Try other alternatives.
If these all lead to failure then more backtracking may be necessary.

55
glide adanted from Reclirsive Backitrackina by Mike Scott LT Austin

Example:
A Simple Maze

G

Search maze until way
out Is found. If no way
out possible, report that.

56

Which way do
| go to get
out?

The Local View

West

North

Behind me, to the South

East

IS a door leading South

57

4

Backtracking Algorithm for Maze

If the current square i1s outside, return TRUE to indicate that
a solution has been found.
If the current square is marked, return FALSE to indicate that
this path has been tried.
Mark the current square.
for (each of the four compass directions)
{ if (this direction is not blocked by a wall)
{ Move one step 1n the indicated direction from the

current sqguare.
Try to solve the maze from there by making a

recursive call.
If this call shows the maze to be solvable, return

TRUE to indicate that fact.

}
}

Unmark the current square.
Return FALSE to indicate that none of the four directions led

to a solution.

58

Backtracking in Action

The crucial part of the
algorithm is the for loop

o) that takes us through the
: alternatives from the current
J S— square. Here we have moved

—i to the North.

for (dir = North; dir <= West; dir++)

{ if ('WallExists(pt, dir))

{1f (SolveMaze (AdjacentPoint (pt, dir)))
return (TRUE) ;

A e (T

1

59

Backtracking in Action

Here we have moved
North again, but there Is
a wall to the North .

East is also

blocked, so we try South.
That call discovers that
the square Is marked, so
It just returns.

4 4
< 15T e T

[
F

60

Backtracking in Action

®

So the next move we
can make 1s West.

Where is this leading?

61

Backtracking in Action

This path reaches
a dead end.

Time to backtrack!

Remember the
program stack!

62

Backtracking in Action

The recursive calls

end and return until
* we find

—‘ [S— ourselves back here.

63

Backtracking in Action

Recursive Backtracking

And now we try
South

64

Path Eventually Found

The 8-Queens Problem

66

The 8-Queens Problem

» A classic chess puzzle

— Place 8 queen pieces on a chess board so that none of them can
attack one another

a kh o 4 e £ o h

/|

i

Recursive Backtracking

Objective of the Problem
e 8-Queens Problem

EEEn v}
NN N " |
NN -
onE e e
EE . "
vl w
N N .
EO NN "

e A Queen can move on 8*8 board in horizontally,Verically and diagonally.
e We have to ensure no two Queens should attack each other

Complexity Analysis:
naive (brute force/exhaustive) solution

* One strategy: guess at a solution

* There are 4,426,165,368 ways to arrange 8 queens on a chessboard of 64
squares

* An observation that eliminates many arrangements from
consideration

* No queen canreside in arow or a column that contains another queen

* Now: only 40,320 (8!) arrangements of queens to be checked for attacks along
diagonals

69

Complexity Analysis

® A possible brute-force algorithm for 8-Queen is to generate the permutations of
the numbers 1 through 8 (of which there are 8! = 40,320),
* and uses the elements of each permutation as indices to place a queen on each row.
* Then itrejects those boards with diagonal attacking positions.

® The backtracking algorithm, is a slight improvement on the permutation
method,

* constructs the search tree by considering one column (or row) of the board at a time,
eliminating most non-solution board positions at a very early stage in their construction.

* Because it rejects column (or row) and diagonal attacks even on incomplete boards, it
examines only 15,720 possible queen placements.

® A further improvement which examines only 5,508 possible queen placements
Is to combine the permutation-based method with the early pruning method:

* The permutations are generated depth-first, and the search space is pruned if the partial
permutation produces a diagonal attack

70

The Eight Queens Problem

* Arecursive algorithm that places a queen in a column

e Base case

* |fthere are no more columns to consider
* You are finished

* Recursive step
* |f you successfully place a queen in the current column
* Considerthe next column
* |f you cannot place a queen in the current column
* You need to backtrack

71

Solve the 8-Queens problem via backtracking

* Backtracking:
* A systematic way to make successive guesses at a solution.

* |f a particular guess leads to a dead end, you back up to that guess and replace it
with a different guess.

* This strategy of retracing steps in reverse order and then trying a new sequences
of steps is called “backtracking”.

* You can combine recursion and backtracking to solve the problem that follows.

72

The backtracking
solution:

1) Start in the leftmost column
2) If all queens are placed
return true
3) Try all rows in the current column.
Do following for every tried row.
a) If the queen can be placed safely in this row
then mark this [row, column] as part of the
solution and recursively check if placing
gueen here leads to a solution.
b) If placing the queen in [row, column] leads to
a solution then return true.
c) If placing queen doesn't lead te a solution then
unmark this [row, column] (Backtrack) and go to
step (a) to try other rows.
4) If all rows have been tried and nothing worked,
return false to trigger backtracking. 73

Search process

—
N
W

4 5 6 7 8 1 2 3 4 5 6 7 8 1T 2 3 45 6 7 8
10|]|- 1 . 1 o | o
el|X]-]"- Il -1
ll- o 1 . 1 .

(a) (b) ()

Figure 5-1 (a) Five queens that cannot attack each other, but that can attack all of column 6; (b) backtracking to
column 5 to try another square for the queen; (c) backtracking to column 4 to try another square for the queen and

then considering column 5 again

74

Pseudo code:

placeEightQueens (chessboard)
placeQueen (chessboard, row = 0)

placeQueen(chessboard, row)
if row is greater than 8,
return true (problem is solved)

for each column from 0 to 8
try to add queen to that column,
— if the row, column position is valid for the new queen
(i.e., it is not under attack)
then move on to the next row of the chessboard
— if placeQueen (chessboard, row + 1) is successfull
then return true to stop the for loop from checking
remaining columns

return false, no position in the current row is valid

75

Solve Sudoku Puzzle

Given a partially filled 9x9 2D array ‘grid[9][9]’, the goal is to assign digits (from 1 to 9) to the empty
cells so that every row, column, and subgrid of size 3x3 contains exactly one instance of the digits
from 110 9.

76

Example

Output :

Input:

77

A Concrete Example

» 9 by 9 matrix with
some numbers filled 1in

» 311 numbers must be
between 1 and 9

» Goal: Each row, each
column, and each mini
matrix must contain
the numbers between 1
and 9 once each

— no duplicates in rows, columns,
or mini matrices

78

Solving Sudoku — Brute Force

» A brute force algorithm is a
simple but general approach

» Try all combinations until
yvou find one that works

» This approach isn’t clever,
but computers are Fast

» If not fast enough, try and
improve on the brute force
results

79

Solving Sudoku

» Brute force Sudoku Solution

If not open cells, solved

scan cells from left to right, top to bottom for first
open cell

When an open cell is found start cycling through
digits 1 to 9.

When a digit is placed check that the set up is
legal

now solve the board

80

Solving Sudoku — Later Steps

513(1 7 513(11217 1121714
6 1195 6 1195 1195
9|8 6 9|8 8
8 6 3 8 6 6
4 8 3 117" |4 8 3 8 3
7 2 6 7 2 2
6 2|8 6 2

419 5 419 419

8 7|9 8 8
>|131112(714]8 5131112174]8
6 1195 6 1195
9|8 6 o s
8 6 3 " 5
4 8 3 1 4 8 3 OhnOI
7 2 6 7 5
6 2|8 5 5

419 5 21119

8 7|9 5

81

Sudoku — A Dead End

» We have reached a dead end in our search

» With the current set up none of the nine
digits work in the top right corner

82

Back track

» When the search reaches a dead
end 1n backs up to the previous
cell 1t was trying to fi1ll and
goes onto to the next digilt

» We would back up to the cell with
a 9 and that turns out to be a
dead end as well so we back up
agaln

— S0 the algorithm needs to remember what digit to
try next

» Now in the cell with the 8. We
try and 9 and move forward again.

(=]

(=]

83

Key Insight

After trying placing a digit in a cell we want to
solve the new sudoku board

— Isn't that a smaller (or simpler version) of the same problem we
started with?

After placing a number 1n a cell, we need to remember
the next number to try in case things don't work out.
We need to know 1f things worked out (found a
solution) or they didn't, and 1f they didn't, try the
next number

If we try all numbers and none of them work i1n our
cell we need to report back that things didn't work

84

Recursive Backtracking

» Problems such as Suduko can be solved using
recursive backtracking;

» recursive because later versions of the
problem are just slightly simpler versions
of the original;

» backtracking because we may have to try
different alternatives

85

Recursive Backtracking Algorithm

Pseudo code for recursive backtracking algorithms:

If at a solution,

for (every possible
Make that choice
Use recursion to
If the recursive
next high level

report success

choice from current state/node)

and take one step along path
solve the problem for the new node/state

call succeeds, report the success to the

Rack out of the current choice to restore the state at the

beginning of the
Report failure

loop.

86

Timing of the above algorithm on a standard laptop

Strategy #Solved puzzles #calls/puzzle max #calls avg time/puzzle (sec)
backtracking
(100M) 93/95 1,772,609.25 22,849,956 1817

Table 1: Search results of Backtracking algorithm when limited to 100M calls.

A challenge: Canyou develop a new algorithm thatis by ~ 1,000 times fasters (on the same laptop) ?

(around 20 ms/puzzle)

87

Boggle words search

INSTRUCTIONS: Find as many words as you can by linking
lstters up, down, side-to-side and diagonally, writing words
on & blank sheet 'of paper. You on yse each Ietter box

once within a singls word. Play and compare
word finds, crossing out cormmon wor

BOGGLE YO_HR BOGGLE’,
POINT SCALE RATING

161+ = Champ

61-100= Pro.

31- 80 = Gamer
21- 30 = Rookie
11- 20= Amateur
0-10 = Tryagain

Boggle BrainBusters Bonus
Wea put special brain-busting words into the grid
of letters. Can you find them?

Find the NAMES OF SIX ANIMALS
THAT START WITH “M" in the grid of
letters. Write your answers below.

i gmunawm«dmm 10-3-05
’ 2006 Hasbeo, Inc. Distributed by Tribune Media Sanvices. Al Rights Resarved. Ansvvers to Saturday’s Boggld BrainBusters:

iy vovwbogglebrainbustars.com ENTITI.E ENTICE ENRAGE EAGLE ERASE ENSUE

Backtracking Solution

We'll try each tile as the beginning of our traversal, and what we'll recursively do is:

1. Check if the tile is valid. (In-bounds in the board ,and matches the character in the word.)

2. Invalidate that tile by changing it to an invalid character, like "*". (Which we know will never be in our
input.)
3. Recursively check the left, right, up, and down tiles.

4. Undo the tile invalidation from step 2.

5. Return the true if this tile was the end of the word or if any of the recursive calls returned true.

The "backtracking" part of this solution is that we're changing shared state (step 2), making recursive calls,

and then undoing our change for when we go back up to previous levels.

89

Summary of today’s lecture

* 1. The recursive way of thinking
* Prove the correctness of recursion
e Recursion versus iteration

* 2. Recursion as a problem solving technique
* Solve the Towers of Hanoi puzzle

* 3. Recursive backtracking

* Examples:

Maze puzzle
Eight-Queens puzzle
Sudoku puzzle

90

Take-home exercises: (for self test, not to be assessed)

1.(\j/vrite a recursive java method that writes the digits of a positive decimal integer in reverse
order.

2. Write a recursive method that computes the product of all the items in the array
A[first.. last].

3. Consider a 4-Queens problem, which has the same rules as the 8-Queens problem but uses
a 4x4 chessboard. Find all solutions to this new problem by applying backtracking by hand.

* (continue on the next page...)

91

4. Consider the following recursive method: 6
public static int p (int x){ 5.9 - 8
if (x<3){ - S R A7
return x; CONE . TR0 S —
} i s 3 .
else{ i B 3 5.4
return p(x-1) * p(x-3) ; i s L3 2 9L 5 B
}//end if
}//end p
Let m(x) be the number of multiplications that the execution of p(x) performs. Figure 4: A killer puzzle generated by Norvig

a. Write recursive definition of m(x).
b. Prove that your answer to Part ais correct by using mathematical induction.

5. Solve the Sudoku puzzle as shown in the figure in the right, using the Java
recursive algorithm.

6. Solve the one knight tour puzzle on the 8x8 chessboard using backtracking.

(https://en.wikipedia.org/wiki/Knight%27s_tour)

https://en.wikipedia.org/wiki/Knight%27s_tour

End of Lecture 7A

93

	Slide 1: COMP1110/1140/6710 Structured programming Week-7 (A) Recursion Revisited
	Slide 2: Topics for the first half of this semester (H1):
	Slide 3: Topics for the second half of this semester (H2): Core Computer Science & ADT:
	Slide 4: Outline (tentative plan) for 2H of 2024 S2
	Slide 5: A few words about your 2nd convenor/lecturer: Hongdong Li
	Slide 6: This week’s topics
	Slide 7: Recursion Revisited
	Slide 8: Recall: Recursion (the basics)
	Slide 9: Recursion (the basics)
	Slide 10: Learning Objectives
	Slide 11: Quotes about “recursion”
	Slide 12: Recursive Thinking
	Slide 13: Recursive Thinking: Example(1): Factorial function
	Slide 14: Recursive Thinking: Example(2)
	Slide 15: Recursive Thinking: Example (3)
	Slide 16: The General Approach
	Slide 17: Requirements for Recursion
	Slide 18: Recursion Design Strategy
	Slide 19: Recursion Design: Example
	Slide 20: Recursive Design Example: Java code
	Slide 21: Tracing a Recursive Method (1)
	Slide 22: In class Exercise:
	Slide 23: Recall : three “musts” for recursion
	Slide 24: The solution
	Slide 25: How to prove a Recursive Method is correct ?
	Slide 26: Recursion and Mathematical Induction
	Slide 27: Proving the correctness by Mathematical Induction
	Slide 28: Recursive Definition of some mathematical functions
	Slide 29: Factorial (, once again)
	Slide 30: Prove the Correctness of the Recursive Factorial
	Slide 31: Power function
	Slide 32
	Slide 33: Problem Solving with Recursion
	Slide 34: Towers of Hanoi: Description
	Slide 35: Towers of Hanoi
	Slide 36: How to solve this puzzle ?
	Slide 37: Example of 4 disks
	Slide 38: A Recursive Solution Strategy
	Slide 39: Towers of Hanoi: Recursion Structure
	Slide 40: Towers of Hanoi: Java Code
	Slide 41: Performance Analysis: a primitive example of “computational complexity analysis”
	Slide 42: A formal proof of time complexity
	Slide 43: Time-complexity when n= 64
	Slide 44: Recursion versus Iteration
	Slide 45: Recursive versus Iterative Methods
	Slide 46: Tail Recursion  Iteration
	Slide 47: Efficiency of Recursion
	Slide 48: So When Should You Use Recursion?
	Slide 49: A preview:
	Slide 50: Recap: recursion
	Slide 51: 5-minute break
	Slide 52: Backtracking for games
	Slide 53: Backtracking technique
	Slide 54: Backtracking technique (Cont.)
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Complexity Analysis: naive (brute force/exhaustive) solution
	Slide 70: Complexity Analysis
	Slide 71: The Eight Queens Problem
	Slide 72: Solve the 8-Queens problem via backtracking
	Slide 73: The backtracking solution:
	Slide 74: Search process
	Slide 75
	Slide 76: Solve Sudoku Puzzle
	Slide 77: Example
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Boggle words search
	Slide 89
	Slide 90: Summary of today’s lecture
	Slide 91: Take-home exercises: (for self test, not to be assessed)
	Slide 92
	Slide 93

