
COMP1110/1140/6710
Week-11(A)

Tree ADT, Tree traversal and Tree applications

Many of the slides are adapted from online sources; they are used here for internal classroom teaching
purpose only. The original copyright belong to their original authors. Please do not post it anywhere externally.1

Study Plan for Week-11

• Week-11(A): (Monday)
• Tree ADT, and Tree Applications

• Week-11(B): (Wednesday)
• Graph ADT, and Graph Algorithms

2

Tree versus Graph

3

4

Tree ADT

5

What is a tree?

• Trees are data type used to represent hierarchical relationship
• Each tree consists of nodes and edges
• Each node represents an object
• Each edge represents the relationship between two nodes.

edge
node

6

Some applications of Trees

President

VP
Personnel

VP
Marketing

Director
Customer
Relation

Director
Sales

Organization Chart

+

* 5

3 2

Expression TreeFile Directory tree

7

Terminology I

• For any two nodes u and v, if there is an edge pointing from u to v, u is
called the parent of v while v is called the child of u. Such edge is
denoted as (u, v).

• In a tree, there is exactly one node without parent, which is called the
root. The nodes without children are called leaves.

u

v

root

u: parent of v
v: child of u

leaves

8

Terminology II

• In a tree, the nodes without children are called leaves. Otherwise,
they are called internal nodes.

internal nodes

leaves

9

Terminology III

• If two nodes have the same parent, they are siblings.
• A node u is an ancestor of v if u is parent of v or parent of parent

of v or …
• A node v is a descendent of u if v is child of v or child of child of v

or …

u

v w

x

v and w are siblings
u and v are ancestors of x

v and x are descendents of u

10

Terminology IV

• A subtree is any node together with all its descendants.

v v

T

A subtree of T

11

Terminology V

• Level of a node n: number of nodes on the path from root to node n
• Height of a tree: maximum level among all of its node

n

Level 1

Level 2

Level 3

Level 4

height=4

What is a tree ? -- According to Wikipedia

• In computer science, a tree is a widely used ADT that represents a hierarchical tree

structure with a set of connected nodes.

• Each node in the tree can be connected to many children (depending on the type of
tree), but must be connected to exactly one parent, except for the root node, which
has no parent (i.e., the root node as the top-most node in the tree hierarchy).

• These constraints mean there are no cycles or "loops" (no node can be its own
ancestor), and also that each child can be treated like the root node of its own
subtree, making recursion a useful technique for tree traversal.

• Binary Trees are a commonly used type, which constrain the number of children for
each parent to at most two.

12

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Binary_tree

13

Binary Tree

• Binary Tree: Tree in which every node has at most 2 children
• Left child of u: the child on the left of u
• Right child of u: the child on the right of u

u

x y

z

w

v
x: left child of u
y: right child of u

w: right child of v
z: left child of w

Example: Arithmetic Expression Tree

• Binary tree associated with an arithmetic expression
• internal nodes: operators
• leaves: operands

• Example: arithmetic expression tree for the expression
(2  (a − 1) + (3  b))

+



−2

a 1

3 b

14

Example: Decision Tree

• Binary tree associated with a decision process
• internal nodes: questions with yes/no answer
• leaves: decisions

• Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Antonio’s Veritas Chili’s

Yes No

Yes No Yes No

15

16

Full binary tree

• If T is empty, T is a full binary tree of height 0.
• If T is not empty and of height h >0, T is a full binary

tree if both subtrees of the root of T are full binary
trees of height h-1.

Full binary tree
of height 3

17

Property of binary tree (I)

• A full binary tree of height h has 2h-1 nodes
No. of nodes = 20 + 21 + … + 2(h-1)

 = 2h – 1

Level 1: 20 nodes

Level 2: 21 nodes

Level 3: 22 nodes

18

Property of binary tree (II)

• Consider a binary tree T of height h. The number of nodes of T  2h-1

Reason: you cannot have more nodes than a full binary tree of height h.

19

Property of binary tree (III)

• The minimum height of a binary tree with n nodes is log(n+1)

By property (II), n  2h-1
Thus, 2h  n+1
That is, h  log2 (n+1)

Recap: Properties of Binary Trees

• Notation
n number of nodes
l number of leaves
i number of internal

nodes
h height

• Properties:

• l = i + 1

• n = 2l − 1

• h  i

• h  (n − 1)2

• l  2h

• h  log2 l

• h  log2 (n + 1) − 1

20

21

Binary Tree ADT

binary

tree

setLeft, setRight
getElem

getLeft, getRight

isEmpty, isFull,

isComplete

setElem

makeTree

22

Representation (implementation) of a Binary Tree

• An array-based implementation

• A reference-based implementation

23

An array-based representation

–1: empty tree

d

b f

a c e

nodeNum item leftChild rightChild

0 d 1 2

1 b 3 4

2 f 5 -1

3 a -1 -1

4 c -1 -1

5 e -1 -1

6 ? ? ?

7 ? ? ?

8 ? ? ?

9 ? ? ?

...

0

6

free

root

24

A reference-based Representation

NULL: empty tree
left rightelement

d

b f

a c

d

b f

a c

You can code this with a
class of three fields:

 Object element;

 BinaryNode left;

 BinaryNode right;

25

Tree Traversal

• Given a binary tree, we may like to do some operations on all
nodes in a binary tree. For example, we may want to double the
value in every node in a binary tree.

• To do this, we need a tree traversal algorithm which visits every
node in the binary tree.

26

Ways to traverse a tree

• There are four main ways to traverse a tree:

• Pre-order:
• (1) visit node, (2) recursively visit left subtree, (3) recursively visit right subtree

• In-order:
• (1) recursively visit left subtree, (2) visit node, (3) recursively right subtree

• Post-order:
• (1) recursively visit left subtree, (2) recursively visit right subtree, (3) visit node

• Level-order:
• Traverse the nodes level by level

• In different situations, we use different traversal algorithm.

27

Examples for expression tree

• By pre-order, (prefix)
+ * 2 3 / 8 4

• By in-order, (infix)
2 * 3 + 8 / 4

• By post-order, (postfix)
2 3 * 8 4 / +

• By level-order,
+ * / 2 3 8 4

• Note 1: Infix is what we read!
• Note 2: Postfix expression can be computed efficiently using stack ADT

+

* /

2 3 8 4

28

Pseudo code: Pre-order

Algorithm pre-order(BTree x)
If (x is not empty) {
 print x.getItem(); // you can do other things!

 pre-order(x.getLeftChild());
 pre-order(x.getRightChild());
}

29

Pre-order example

Pre-order(a);

a

b c

d

Print a;

Pre-order(b);
Pre-order(c);

Print b;

Pre-order(d);
Pre-order(null);

Print c;

Pre-order(null);
Pre-order(null);

Print d;

Pre-order(null);
Pre-order(null);

a b d c

30

Time complexity of Pre-order Traversal

• For every node x, we will call
pre-order(x) one time, which performs O(1)
operations.

• Thus, the total time = O(n).

31

Pseudo codes: In-order and post-order

Algorithm in-order(BTree x)
If (x is not empty) {
 in-order(x.getLeftChild());
 print x.getItem(); // you can do other things!
 in-order(x.getRightChild());
}

Algorithm post-order(BTree x)
If (x is not empty) {
 post-order(x.getLeftChild());
 post-order(x.getRightChild());
 print x.getItem(); // you can do other things!
}

32

In-order example

In-order(a);

a

b c

d

In-order(b);

Print a;
In-order(c);

In-order(d);

Print b;
In-order(null);

In-order(null);

Print c;
In-order(null);

In-order(null);

Print d;
In-order(null);

d b a c

33

Post-order example

Post-order(a);

a

b c

d

Post-order(b);

Post-order(c);
Print a;

Post-order(d);

Post-order(null);
Print b;

Post-order(null);

Print c;
Post-order(null);

Post-order(null);

Post-order(null);
Print d;

d b c a

34

Time complexity for in-order and post-order

• Similar to pre-order traversal, the time complexity
is O(n).

35

Level-order

• Level-order traversal requires a queue!

Algorithm level-order(BTree t)
 Queue Q = new Queue();
 BTree n;

 Q.enqueue(t); // insert pointer t into Q

 while (! Q.empty()){
 n = Q.dequeue(); //remove next node from the front of Q

 if (!n.isEmpty()){
 print n.getItem(); // you can do other things
 Q.enqueue(n.getLeft()); // enqueue left subtree on rear of Q
 Q.enqueue(n.getRight()); // enqueue right subtree on rear of Q
 };
 };

36

Time complexity of Level-order traversal

• Each node will enqueue and dequeue one time.
• For each node dequeued, it only does one print

operation!
• Thus, the time complexity is O(n).

General Tree ADT

• We use positions to abstract
nodes

• Generic methods:
• integer size()
• boolean isEmpty()
• objectIterator elements()
• positionIterator positions()

• Accessor methods:
• position root()
• position parent(p)
• positionIterator children(p)

• Query methods:

• boolean isInternal(p)

• boolean isLeaf (p)

• boolean isRoot(p)

• Update methods:

• swapElements(p, q)

• object replaceElement(p, o)

• Additional update methods may
be defined by data structures
implementing the Tree ADT

37

38

General tree implementation

Public Class TreeNode

{

 Object Element

 TreeNode FirstChild

 TreeNode * Nextsiblings

}

because we do not know how many children a

node has in advance.

• Traversing a general tree is similar to traversing a binary tree

A

GF

DCB E

General tree preorder traversal

• A traversal visits the nodes of a tree
in a systematic manner

• In a preorder traversal, a node is
visited before its descendants

• Application: print a structured
document

Algorithm preOrder(v)

visit(v)

for each child w of v

 preOrder(w)

Data Structures & Algorithms

1. A C++ Primer Bibliography2. Object-Oriented Design

2.1 Goals, Principles,
and Patterns

2.2 Inheritance and
Polymorphism

1.1 Basic C++
Programming Elements

1.2 Expressions 2.3 Templates

1

2

3

5

4
6

7 8

9

39

Exercise: Preorder Traversal

• In a preorder traversal, a node is
visited before its descendants

• List the nodes of this tree in
preorder traversal order.

Algorithm preOrder(v)

visit(v)

for each child w of v

 preOrder (w)

A

B DC

G HE F

I J K

40

General Tree Postorder Traversal

• In a postorder traversal, a node is
visited after its descendants

• Application: compute space
used by files in a directory and its
subdirectories

Algorithm postOrder(v)

for each child w of v

 postOrder(w)

visit(v)

COMP1110/

homeworks/
todo.txt
1K

programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8

41

In-class exercise:
 Postorder Traversal

Algorithm postOrder(v)

for each child w of v

 postOrder(w)

visit(v)

• In a postorder traversal, a node is
visited after its descendants

• List the nodes of this tree in postorder
traversal order.

A

B DC

G HE F

I J K

42

In-class Exercise:
 Inorder Traversal of a binary tree

• In an inorder traversal a node is
visited after its left subtree and
before its right subtree

• List the nodes of this tree in inorder
traversal order.

Algorithm inOrder(v)

if isInternal(v)

inOrder(leftChild(v))

visit(v)

if isInternal(v)

inOrder(rightChild(v))

A

B C

G HE F

I K

43

In-class exercise:
 Preorder & InOrder Traversal of a binary tree

• Draw a (single) binary tree T, such that

• Each internal node of T stores a single
character

• A preorder traversal of T yields EXAMFUN

• An inorder traversal of T yields MAFXUEN

44

In-class exercise:
 Print Arithmetic Expressions

• Specialization of an inorder
traversal

• print operand or operator when
visiting node

• print “(“ before traversing left
subtree

• print “)“ after traversing right
subtree

Algorithm printExpression(v)

if isInternal(v)

 print(“(’’)

printExpression(leftChild(v))

print(v.element())

if isInternal(v)

printExpression(rightChild(v))

 print (“)’’)

+



−2

a 1

3 b

((2  (a − 1)) + (3  b))

45

In-class exercise:
 Evaluate Arithmetic Expressions

• Specialization of a postorder
traversal
• recursive method returning

the value of a subtree
• when visiting an internal

node, combine the values of
the subtrees

Algorithm evalExpr(v)

if isLeaf(v)

return v.element()

else

 x  evalExpr(leftChild(v))

 y  evalExpr(rightChild(v))

   operator stored at v

return x  y

+



−2

a 1

3 b

46

In-class Exercise:
 Arithmetic Expressions

• Draw an expression tree that has

• Four leaves, storing the values 2, 4, 8, and 8

• 3 internal nodes, storing operations +, -, *, / (operators
can be used more than once, but each internal node
stores only one)

• The value of the root is 24

47

Solution: Arithmetic Expressions

• Draw an expression tree that has

• Four leaves, storing the values 2, 4, 8, and 8

• 3 internal nodes, storing operations +, -, *, / (operators
can be used more than once, but each internal node
stores only one)

• The value of the root is 24

+

+

8 8 2 4

48

Take-home Exercise:
 Arithmetic Expressions

• Draw an expression tree that has

• Four leaves, storing the values 1, 3, 4, and 8

• 3 internal nodes, storing operations +, -, *, /
(operators can be used more than once, but
each internal node stores only one)

• The value of the root is 24

49

Another example:

 Huffman Coding

50

Take a break..

51

Coding theory

• Conversion, Encryption,
Compression

• Binary coding

• Variable length coding

A 0 0 1

B 0 1 0

C …

D

E

F

52

Encoding Messages

• Encode a message composed of a string of characters

• Codes used by computer systems
• ASCII

• uses 8 bits per character
• can encode 256 characters

• Unicode
• 16 bits per character
• can encode 65536 characters
• includes all characters encoded by ASCII

• ASCII and Unicode are fixed-length codes
• all characters represented by same number of bits

53

Problems
• Suppose that we want to encode a message

constructed from the symbols A, B, C, D, and E
using a fixed-length code
• How many bits are required to encode each

symbol?
 at least 3 bits are required
 2 bits are not enough (can only encode four symbols)

 How many bits are required to encode the message
DEAACAAAAABA?

 there are twelve symbols, each requires 3 bits;

 12*3 = 36 bits are required

54

Drawbacks of fixed-length codes

• Wasted space
• Unicode uses twice as much space as ASCII

• inefficient for plain-text messages containing only ASCII characters

• Same number of bits used to represent all characters
• ‘a’ and ‘e’ occur more frequently than ‘q’ and ‘z’

• Potential solution: use variable-length codes
• variable number of bits to represent characters when frequency of

occurrence is known
• shorter codes for characters that occur more frequently

55

Advantages of variable-length codes

• The advantage of variable-length codes over fixed-length is short
codes can be given to characters that occur frequently
• on average, the length of the encoded message is less than fixed-length

encoding

• Potential problem: how do we know where one character ends
and another begins?

• not a problem if number of bits is fixed!

A = 00
B = 01
C = 10
D = 11

0010110111001111111111

A C D B A D D D D D

56

Decode the following

E 0

T 11

N 100

I 1010

S 1011

11010010010101011

E 0

T 10

N 100

I 0111

S 1010

100100101010

57

Problem

• Design a variable-length prefix-free code such that the message
DEAACAAAAABA can be encoded using 22 bits

• Possible solution:
• A occurs eight times while B, C, D, and E each occur once
• represent A with a one bit code, say 0

• remaining codes cannot start with 0
• represent B with the two bit code 10

• remaining codes cannot start with 0 or 10
• represent C with 110
• represent D with 1110
• represent E with 11110

58

Prefix(-free) property

• A code has the prefix-free property if no character code is the prefix (start of
the code) for another character

• Example:

• 000 is not a prefix of 11, 01, 001, or 10
• 11 is not a prefix of 000, 01, 001, or 10 …

Symbol Code

P 000

Q 11

R 01

S 001

T 10

01001101100010

R S T Q P T

59

Code without prefix-free property

• The following code does not have prefix-free property

• The pattern 1110 can be decoded as QQQP, QTP, QQS, or TS

Symbol Code

P 0

Q 1

R 01

S 10

T 11

60

Prefix codes and binary trees

• Tree representation of
prefix codes

A 00

B 010

C 0110

D 0111

E 10

F 11
61

Construct the tree for the
following code ?

E 0

T 11

N 100

I 1010

S 1011

62

Solution:

• Tree representation of
prefix codes

63

E 0

T 11

N 100

I 1010

S 1011

E

T

N

I S

Encoded message

Symbol Code

A 0

B 10

C 110

D 1110

E 11110

DEAACAAAAABA

1110111100011000000100 22 bits

64

Another possible code

Symbol Code

A 0

B 100

C 101

D 1101

E 1111

DEAACAAAAABA

1101111100101000001000 22 bits

65

Better code

Symbol Code

A 0

B 100

C 101

D 110

E 111

DEAACAAAAABA

11011100101000001000 20 bits

66

What code to use?

• Question: Is there a variable-length code that makes the most
efficient use of space?

Answer: Yes!

67

Minimum weighted length code

• Average cost
• Average leaf depth

• Huffman tree – tree with minimum weighted path length
• C(T) – weighted path length

68

Compute average leaf depth

A 00 1/4

B 010 1/8

C 0110 1/16

D 0111 1/16

E 1 1/2

69

Huffman coding tree

• Binary tree
• each leaf contains symbol (character)
• label edge from node to left child with 0
• label edge from node to right child with 1

• Code for any symbol obtained by following path from root to the
leaf containing symbol

• Code has prefix-free property
• leaf node cannot appear on path to another leaf
• note: fixed-length codes are represented by a complete Huffman tree and

clearly have the prefix-free property

70

Building a Huffman tree

• Find frequencies of each symbol occurring in message
• Begin with a forest of single node trees

• each contain symbol and its frequency

• Do recursively
• select two trees with smallest frequency at the root
• produce a new binary tree with the selected trees as children and store

the sum of their frequencies in the root

• Recursion ends when there is one tree
• this is the Huffman coding tree

71

Example

• Build the Huffman coding tree for the message

 “This is his message”
• Character frequencies

• Begin with a forest of single-node trees

A G M T E H _ I S

1 1 1 1 2 2 3 3 5

11 31 21 2 3 5

A G I SM T E H _

72

Step 1

11 31 21 2 3 5

A G I SM T E H _

2

73

Step 2

11 31 21 2 3 5

A G I SM T E H _

2 2

74

Step 3

11 311 3 5

A G I SM T _

2 2

2 2

E H

4

75

Step 4

11 311 3 5

A G I SM T _

2 2

2 2

E H

4

4

76

Step 5

11 311 3 5

A G I SM T _

2 2

2 2

E H

4

4

6

77

Step 6

3 3 5

I S_

2 2

E H

4

11 11

A G M T

2 2

4

6

8

78

Step 7

3 3

5

I

S

_

2 2

E H

4

11 11

A G M T

2 2

4 6

8 11

79

Step 8

3 3

5

I

S

_

2 2

E H

4

11 11

A G M T

2 2

4 6

8 11

19

80

Label edges

3 3

5

I

S

_

2 2

E H

4

11 11

A G M T

2 2

4 6

8 11

19

0

00

00

0

0

0

1

11

1 1

1
1

1

81

Huffman code & encoded message

S 11
E 010
H 011
_ 100
I 101
A 0000
G 0001
M 0010
T 0011

This is his message

00110111011110010111100011101111000010010111100000001010
82

Huffman Code

Greedy template. [Huffman, 1952]

 Create tree bottom-up.

a) Make two leaves for two lowest-frequency letters y and z.

b) Recursively build tree for the rest using a meta-letter for yz.

83

Codes: Huffman Encoding

Q. What is the time complexity?

Huffman(S) {

 if |S|=2 {

 return tree with root and 2 leaves

 } else {

 let y and z be lowest-frequency letters in S

 S’ = S
 remove y and z from S’
 insert new letter  in S’ with f=fy+fz
 T’ = Huffman(S’)
 T = add two children y and z to leaf  from T’
 return T

 }

}

84

Codes: Huffman Encoding

Q. What is the time complexity?
A. T(n) = T(n-1) + O(n) ---> O(n2)

Q. How to implement finding lowest-frequency letters efficiently?
A. Use priority queue for S: T(n) = T(n-1) + O(log n) --> O(n log n)

Huffman(S) {

 if |S|=2 {

 return tree with root and 2 leaves

 } else {

 let y and z be lowest-frequency letters in S

 S’ = S
 remove y and z from S’
 insert new letter  in S’ with f=fy+fz
 T’ = Huffman(S’)
 T = add two children y and z to leaf  from T’
 return T

 }

}

85

Example:

Weights 4, 5, 6, 7, 11, 14, 21;

Draw a Huffman tree for the following data values
and show internal weights:

3, 5, 9, 14, 16, 35

86

Summary

• Huffman coding is a technique used to compress files for
transmission

• Uses statistical coding
• more frequently used symbols have shorter code words

• Works well for text and fax transmissions
• An application that uses several data structures

87

Tree ADT for photo-realistic rendering using Ray-tracing
in CG

88

89

Ray_tracing tree

90

Ray_tracing tree

Next: Week-11(B)

• Graph ADT, and Graph Algorithms.

91

	Slide 1: COMP1110/1140/6710 Week-11(A)
	Slide 2: Study Plan for Week-11
	Slide 3: Tree versus Graph
	Slide 4: Tree ADT
	Slide 5: What is a tree?
	Slide 6: Some applications of Trees
	Slide 7: Terminology I
	Slide 8: Terminology II
	Slide 9: Terminology III
	Slide 10: Terminology IV
	Slide 11: Terminology V
	Slide 12: What is a tree ? -- According to Wikipedia
	Slide 13: Binary Tree
	Slide 14: Example: Arithmetic Expression Tree
	Slide 15: Example: Decision Tree
	Slide 16: Full binary tree
	Slide 17: Property of binary tree (I)
	Slide 18: Property of binary tree (II)
	Slide 19: Property of binary tree (III)
	Slide 20: Recap: Properties of Binary Trees
	Slide 21: Binary Tree ADT
	Slide 22: Representation (implementation) of a Binary Tree
	Slide 23: An array-based representation
	Slide 24: A reference-based Representation
	Slide 25: Tree Traversal
	Slide 26: Ways to traverse a tree
	Slide 27: Examples for expression tree
	Slide 28: Pseudo code: Pre-order
	Slide 29: Pre-order example
	Slide 30: Time complexity of Pre-order Traversal
	Slide 31: Pseudo codes: In-order and post-order
	Slide 32: In-order example
	Slide 33: Post-order example
	Slide 34: Time complexity for in-order and post-order
	Slide 35: Level-order
	Slide 36: Time complexity of Level-order traversal
	Slide 37: General Tree ADT
	Slide 38: General tree implementation
	Slide 39: General tree preorder traversal
	Slide 40: Exercise: Preorder Traversal
	Slide 41: General Tree Postorder Traversal
	Slide 42: In-class exercise: Postorder Traversal
	Slide 43: In-class Exercise: Inorder Traversal of a binary tree
	Slide 44: In-class exercise: Preorder & InOrder Traversal of a binary tree
	Slide 45: In-class exercise: Print Arithmetic Expressions
	Slide 46: In-class exercise: Evaluate Arithmetic Expressions
	Slide 47: In-class Exercise: Arithmetic Expressions
	Slide 48: Solution: Arithmetic Expressions
	Slide 49: Take-home Exercise: Arithmetic Expressions
	Slide 50: Another example: Huffman Coding
	Slide 51: Take a break..
	Slide 52: Coding theory
	Slide 53: Encoding Messages
	Slide 54: Problems
	Slide 55: Drawbacks of fixed-length codes
	Slide 56: Advantages of variable-length codes
	Slide 57: Decode the following
	Slide 58: Problem
	Slide 59: Prefix(-free) property
	Slide 60: Code without prefix-free property
	Slide 61: Prefix codes and binary trees
	Slide 62: Construct the tree for the following code ?
	Slide 63: Solution:
	Slide 64: Encoded message
	Slide 65: Another possible code
	Slide 66: Better code
	Slide 67: What code to use?
	Slide 68: Minimum weighted length code
	Slide 69: Compute average leaf depth
	Slide 70: Huffman coding tree
	Slide 71: Building a Huffman tree
	Slide 72: Example
	Slide 73: Step 1
	Slide 74: Step 2
	Slide 75: Step 3
	Slide 76: Step 4
	Slide 77: Step 5
	Slide 78: Step 6
	Slide 79: Step 7
	Slide 80: Step 8
	Slide 81: Label edges
	Slide 82: Huffman code & encoded message
	Slide 83: Huffman Code
	Slide 84: Codes: Huffman Encoding
	Slide 85: Codes: Huffman Encoding
	Slide 86: Example: Weights 4, 5, 6, 7, 11, 14, 21; Draw a Huffman tree for the following data values and show internal weights: 3, 5, 9, 14, 16, 35
	Slide 87: Summary
	Slide 88: Tree ADT for photo-realistic rendering using Ray-tracing in CG
	Slide 89: Ray_tracing tree
	Slide 90
	Slide 91: Next: Week-11(B)

