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Graph ADT, Traversal and Graph Algorithms
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Tree versus Graph
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What is a graph?

• Graphs represent the relationships among data items
• A graph G consists of

• a set V of nodes (vertices)
• a set E of edges: each edge connects two nodes

• Each node represents an item
• Each edge represents the relationship between two items

node

edge
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Examples of graphs

H

H

C HH

Molecular Structure

Server 1

Server 2

Terminal 1

Terminal 2

Computer Network

Other examples: electrical and communication networks, 
airline routes, flow chart, graphs for planning projects, social 

networks, … 



A bit of history of graph theory 
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A bit of history of graph theory 
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Nobel Prize for Chemistry 2024 

• Protein folding is essential a graph matching problem.
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Hamilton cycle
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Formal Definition of graph

• The set of nodes is denoted as V
• For any nodes u and v, if u and v are connected by an 

edge, such edge is denoted as (u, v)

• The set of edges is denoted as E
• A graph G is defined as a pair:  G= (V, E)

v

u

(u, v)



Terminology

• G = {V, E}
• A graph G consists of two sets

• A set V of vertices, or nodes
• A set E of edges 

• A subgraph
• Consists of a subset of a graph’s vertices and a subset of its edges

• Adjacent vertices
• Two vertices that are joined by an edge

10
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Terminology

• A path between two vertices
• A sequence of edges that begins at one vertex and ends at another vertex
• May pass through the same vertex more than once

• A simple path
• A path that passes through a vertex only once

• A cycle
• A path that begins and ends at the same vertex

• A simple cycle
• A cycle that does not pass through a vertex more than once
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Adjacent

• Two nodes u and v are said to be adjacent if (u, v)  E

v X

w
u

(u, v)

u and v are adjacent
v and w are not adjacent
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Path and simple path

• A path from v1 to vk is a sequence of nodes v1, v2, …, vk that 
are connected by edges (v1, v2), (v2, v3), …, (vk-1, vk)

• A path is called a simple path if every node appears at most 
once.

v1

v2

v4

v3

v5

- v2, v3, v4, v2, v1 is a path

- v2, v3, v4, v5 is a path, also 

it is a simple path
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Cycle and simple cycle

• A cycle is a path that begins and ends at the same node
• A simple cycle is a cycle if every node appears at most 

once, except for the first and the last nodes

v1

v2

v4

v3

v5

- v2, v3, v4, v5 , v3, v2 is a cycle

- v2, v3, v4, v2 is a cycle, it is 

also a simple cycle



15

Connected graph

• A graph G is connected if there exists path between every pair of 
distinct nodes; otherwise, it is disconnected

v1

v4

v3

v5

v2

This is a connected graph because there exists path 
between every pair of nodes
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Example of disconnected graph

v1

v4

v3

v5

v2

This is a disconnected graph because there does not 
exist path between some pair of nodes, says, v1 and v7

v7

v6

v8

v9
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Connected component

• If a graph is disconnect, it can be partitioned into a 
number of graphs such that each of them is 
connected. Each such graph is called a connected 
component. 

v1

v4

v3

v5

v2 v7

v6

v8

v9
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Complete graph

• A graph is complete if each pair of distinct nodes has an edge

Complete graph
with 3 nodes

Complete graph
with 4 nodes
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Subgraph

• A subgraph of a graph G =(V, E) is a graph H = (U, F) such that 
U  V and  F  E.

v1

v4

v3

v5

v2

G

v4

v3

v5

v2

H
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Weighted graph

• If each edge in G is assigned a weight, it is called a weighted graph,  
G=G(V,E,W). 

Houston

Chicago
1000

2000
3500

New York
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Directed graph (digraph)

• All previous graphs are undirected graph
• If each edge in E has a direction, it is called a directed edge
• A directed graph is a graph where every edges is a directed 

edge

Directed edge

Houston

Chicago
1000

2000
3500

New York
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More on directed graph

• If (x, y) is a directed edge, we say 
• y is adjacent to x
• y is successor of x
• x is predecessor of y

• In a directed graph, directed path, directed cycle can be 
defined similarly

yx
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Property of graph

• A undirected graph that is connected and has no cycle is 
a tree.

• A tree with n nodes must have exactly n-1 edges.

• A connected undirected graph with n nodes must have at 
least n-1 edges.



Graphs As ADTs

• Graphs form an important family of ADT. 

• Two options for defining graphs
• Vertices contain values
• Vertices do not contain values

• Operations of the ADT graph
• Create an empty graph
• Determine whether a graph is empty
• Determine the number of vertices in a graph
• Determine the number of edges in a graph

24



Graphs As ADTs

• Operations of the ADT graph (Continued)
• Determine whether an edge exists between two given vertices; for 

weighted graphs, return weight value
• Insert a vertex in a graph whose vertices have distinct search keys that 

differ from the new vertex’s search key
• Insert an edge between two given vertices in a graph
• Delete a particular vertex from a graph and any edges between the vertex 

and other vertices
• Delete the edge between two given vertices in a graph
• Retrieve from a graph the vertex that contains a given search key

25
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Implementing Graphs

• Most common implementations of a graph
• Adjacency matrix
• Adjacency linked list

• Adjacency matrix
• Adjacency matrix for a graph with n vertices numbered 0, 1, …, n – 1

• An n by n array matrix such that matrix[i][j] is
• 1 (or true) if there is an edge from vertex i to vertex j
• 0 (or false) if there is no edge from vertex i to vertex j
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Implementing Graph

• Adjacency matrix
• Represent a graph using a two-dimensional array

• Adjacency linked list
• Represent a graph using n linked lists where n is the number of vertices



Adjacent Matrix  

Figure 14.6

a) A directed graph and b) its adjacency matrix

28
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Adjacency matrix
• Adjacency matrix for a weighted graph with n vertices numbered 0, 1, …, n – 1

• An n by n array matrix such that matrix[i][j] is
• The weight that labels the edge from vertex i to vertex j if there is an edge from i to j
•  if there is no edge from vertex i to vertex j
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Adjacency matrix for directed graph

v1

v4

v3

v5

v2

G

1 2 3 4 5

v1 v2 v3 v4 v5

1 v1 0 1 0 0 0

2 v2 0 0 0 1 0

3 v3 0 1 0 1 0

4 v4 0 0 0 0 0

5 v5 0 0 1 1 0

Matrix[i][j] = 1 if (vi, vj)E
  0 if (vi, vj)E
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Adjacency matrix for weighted undirected graph

v1

v4

v3

v5

v2

G

1 2 3 4 5

v1 v2 v3 v4 v5

1 v1 ∞ 5 ∞ ∞ ∞

2 v2 5 ∞ 2 4 ∞

3 v3 0 2 ∞ 3 7

4 v4 ∞ 4 3 ∞ 8

5 v5 ∞ ∞ 7 8 ∞

Matrix[i][j] = w(vi, vj) if (vi, vj)E or (vj, vi)E
   ∞  otherwise

5
2

3 7
8

4
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Adjacency linked list for directed graph

v1

v4

v3

v5

v2

G

1 v1 → v2

2 v2 → v4

3 v3 → v2 → v4

4 v4

5 v5 → v3 → v4
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Adjacency list for weighted undirected graph

v1

v4

v3

v5

v2

G

5
2

3 7
8

4

1 v1 → v2(5)

2 v2 → v1(5) → v3(2) → v4(4)

3 v3 → v2(2) → v4(3) → v5(7)

4 v4 → v2(4) → v3(3) → v5(8)

5 v5 → v3(7) → v4(8)



Adjacency list

An adjacency list for a graph with n vertices numbered 0, 1, …, n – 1
• Consists of n linked lists
• The ith linked list has a node for vertex j if and only if the graph contains an 

edge from vertex i to vertex j
• This node can contain either

• Vertex j’s value, if any
• An indication of vertex j’s identity

34



Adjacency list

Figure 14.8

a) A directed graph and 

b) its adjacency list

35



Adjacency list

• Adjacency list for an undirected graph
• Treats each edge as if it were two directed edges in opposite directions

Figure 14.9

a) A weighted undirected graph and b) its adjacency list

14 -36



Recap:  
 Two implementations (representations )

An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation. 

37



Comparison: 
     Adjacency matrix  Versus Adjacency list

• Two common operations on graphs
1. Determine whether there is an edge from vertex i to vertex j
2. Find all vertices adjacent to a given vertex i

• Adjacency matrix
• Supports operation 1 more efficiently

• Adjacency list
• Supports operation 2 more efficiently
• Often requires less space than an adjacency matrix

38
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Pros and Cons of the two implementations

• Adjacency matrix
• Allows us to determine whether there is an edge from node i to node j in 

O(1) time;

• Adjacency list
• Allows us to find all nodes adjacent to a given node j efficiently
• If the graph is sparse, adjacency list requires less space



Graph problems / Graph algorithms

40
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Problems related to Graph

• Graph Traversal
• Topological Sort
• Minimum Spanning Tree
• Shortest Path
• All-pair shortest path 
• Euler path
• Hamilton circuit 
• Travelling Salesman Problem 
• The four colour problem.  
• Graph Cut problem
• Max flow and Min Cut
• … 



Graph Traversal

42
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Graph Traversal Algorithm

• To traverse a tree, we use tree traversal algorithms like pre-order, 
in-order, and post-order to visit all the nodes in a tree

• Similarly, graph traversal algorithm tries to visit all the nodes it can 
reach.

• If a graph is disconnected, a graph traversal that begins at a node v 
will visit only a subset of nodes, that is, the connected component 
containing v.
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Two basic traversal algorithms

• Depth-first-search (DFS)
• After visit node v, DFS strategy proceeds along a path from v as deeply into the graph 

as possible before backing up

• Breadth-first-search (BFS)
• After visit node v, BFS strategy visits every node adjacent to v before visiting any 

other nodes
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Graph Traversals

Figure 14.10

Visitation order for a) a depth-first search; b) a breadth-first search



Depth-First Search

• Depth-first search (DFS) traversal
• Goes as deeply into the graph as possible from a vertex before 

backtracking

• DFS strategy looks similar to pre-order. From a given node v, it first visits 
itself. Then, recursively visit its unvisited neighbors one by one.

• A recursive implementation is simple
• An iterative implementation uses a stack

46



Recursive Depth-First Search

• Recursive DFS traversal can be defined as follows: 

dfs(v)
 print(v);
    mark v as visited
 for (each unvisited vertex u adjacent to v)
  dfs(u)

47



Iterative Depth-First Search

• Iterative DFS traversal
dfs(v)
 s.createStack()
 s.push(v)
 mark v as visited
 while (!s.isEmpty()) {
  if (no unvisited vertices adjacent to the vertex on the stack 

top)
   s.pop() // backtrack
  } else {
   select an unvisited vertex u adjacent to the vertex on 

the
        stack top
   s.push(u)
   mark u as visited
  }
 } 48



Iterative Depth-First Search

i

a
b

f

e

g

c

d

h

Node visited Stack (bottom to top)

a  a

b  a b

c  a b c

d  a b c d

g  a b c d g

e  a b c d g e

Node visited Stack (bottom to top)

(cont’d)

(backtrack) a b c d g

f  a b c d g f

(backtrack) a b c d g

(backtrack) a b c d

h  a b c d h

(backtrack) a b c d

(backtrack) a b c

(backtrack) a b

(backtrack) a

i  a i

(backtrack) a

(backtrack) empty

49



Breadth-First Search

• Breadth-first search (BFS) traversal
• Visits every vertex adjacent to a vertex v that it can before visiting any 

other vertex
• A first visited, first explored strategy

• An iterative implementation uses a queue
• A recursive implementation is possible, but not simple

50
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Breadth-first search (BFS)

• BFS strategy looks similar to level-order. From a given node v, it 
first visits itself. Then, it visits every node adjacent to v before 
visiting any other nodes.

• 1. Visit v
• 2. Visit all v’s neigbours
• 3. Visit all v’s neighbours’ neighbours
• …

• Similar to level-order, BFS is based on a queue.



Iterative Breadth-First Search

• Iterative BFS traversal
bfs(v)
 q.createQueue()
 q.enqueue(v)
 mark v as visited
 while (!q.isEmpty()) {
  w = q.dequeue()
  for (each unvisited vertex u adjacent to w) {
   mark u as visited
   q.enqueue(u)
  }
 }

52



Iterative Breadth-First Search

i

a
b

f

e

g

c

d

h

Node visited Queue (front to back)

a  a

  (empty)

b  b

f  b f

i  b f i

  f i

Node visited Queue (front to back)

(cont’d)

c  f i c

e  f i c e

  i c e

g  i c e g

  c e g

  e g

d  e g d

  g d

  d

  (empty)

h  h

  (empty)

53
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BFS example

• Start from v5

v5

1

v3

2

v4

3

v2

4

v1

5

v1

v4

v3

v5

v2

G

x

Visit Queue 

(front to 

back)

v5 v5

empty

v3 v3

v4 v3, v4

v4

v2 v4, v2

v2

empty

v1 v1

empty

x

x

x x



Topological order and topological sorting

55



56

Topological order
• Consider the prerequisite structure for courses:

• Each node x represents a course x

• (x, y) represents that course x is a prerequisite to course y

• Note that this graph should be a directed graph without cycles (called a directed acyclic graph).

• A linear order to take all 5 courses while satisfying all prerequisites is called a topological order.

• E.g. 
• a, c, b, e, d
• c, a, b, e, d

b d

e
c

a
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Topological sort

• Arranging all nodes in the graph in a topological order

Algorithm TopoSort
n = |V|;
for i = 1 to n {
 select a node v that has no successor;
 aList.add(1, v); 
 delete node v and its edges from the graph;
}
return aList;
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Example: topo-sort 

b d

e
c

a

1. d has no successor! 
Choose d!

a

5. Choose a!

The topological order is a,b,c,e,d

2. Both b and e have no 
successor! Choose e!

b

e
c

a

3. Both b and c have 
no successor! 
Choose c!

b

c

a

4. Only b has no 
successor! 
Choose b!

b
a



Spanning tree and MST 
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Spanning Tree
• Given a connected undirected graph G, a spanning tree of G is a 

subgraph of G that contains all of G’s nodes and enough of its edges to 
form a tree.

v1

v4

v3

v5

v2

Spanning 
tree Spanning tree is not unique!
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DFS spanning tree
• Generate the spanning tree edge during the DFS traversal.

Algorithm dfsSpanningTree(v)
mark v as visited;
for (each unvisited node u adjacent to v) {
 mark the edge from u to v;
 dfsSpanningTree(u);
}

• Similar to DFS, the spanning tree edges can be generated based on BFS traversal.
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Minimum (cost) Spanning Tree

• Consider a connected undirected graph where

• Each node x represents a city x

• Each edge (x, y) has a number which measures the cost of placing telephone 
line between city x and city y

• Problem: connecting all cities while minimizing the total cost
• Solution: find a spanning tree with minimum total weight, that is, 

minimum spanning tree



Minimum Spanning Tree 

• A spanning tree of an undirected graph G is a subgraph of G that is 
a tree containing all the vertices of G. 

• In a weighted graph, the weight of a subgraph is the sum of the 
weights of the edges in the subgraph. 

• A minimum spanning tree (MST) for a weighted undirected graph is 
a spanning tree with minimum weight. 

63



Minimum Spanning Tree 

An undirected graph and its minimum spanning tree.
64
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Formal definition of minimum spanning tree

• Given a connected undirected graph G.
• Let T be a spanning tree of G.
• cost(T) = eTweight(e)
• The minimum spanning tree is a spanning tree T which minimizes 

cost(T)

v1

v4

v3

v5

v2

5
2

3 7
8

4
Minimum
spanning

tree



Prim's Algorithm for MST 

• Prim's algorithm for finding an MST is a greedy algorithm. 

• Start by selecting an arbitrary vertex, include it into the current MST. 

• Grow the current MST by inserting into it the vertex closest to one of the 
vertices already in current MST. 

66
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Prim’s algorithm (II)

Algorithm PrimAlgorithm(v)
• Mark node v as visited and include it in the minimum spanning 

tree;
• while (there are unvisited nodes) {

• find the minimum edge (v, u) between a visited node v and an unvisited 
node u;

• mark u as visited;
• add both v and (v, u) to the minimum spanning tree;

 }
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Prim’s algorithm (I)

Start from v5, find the 

minimum edge attach to v5

v2v1

v4

v3

v5

5 2

3
7

8

4

Find the minimum edge 

attach to v3 and v5

v2v1

v4

v3

v5

5 2

3
7

8

4

Find the minimum edge 

attach to v2, v3 and v5

v2v1

v4

v3

v5

5 2

3
7

8

4

v2v1

v4

v3

v5

5 2

3
7

8

4

v2v1

v4

v3

v5

5 2

3
7

8

4

Find the minimum edge 

attach to v2, v3 , v4 and v5



Shortest path problem
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Shortest path

• Consider a weighted directed graph
• Each node x represents a city x
• Each edge (x, y) has a number which represent the cost of traveling from 

city x to city y

• Problem: find the minimum cost to travel from city x to city y
• Solution: find the shortest path from x to y



Single-Source Shortest Paths 

• For a weighted graph G = (V,E,w), the single-source shortest paths 
problem is to find the shortest paths from a vertex v ∈ V to all other 
vertices in V. 

• Dijkstra's algorithm is similar to Prim's algorithm. 
• maintains a set of nodes for which the shortest paths are known.
• grow this set based on the node closest to source using one of the nodes 

in the current shortest path set. 

71
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Formal definition of shortest path

• Given a weighted directed graph G.
• Let P be a path of G from x to y.
• cost(P) = ePweight(e)
• The shortest path is a path P which minimizes cost(P)

v2
v1

v4

v3

v5

5
2

3 4
8

4 Shortest Path
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Dijkstra’s algorithm

• Consider a graph G, each edge (u, v) has a weight w(u, v) > 0.
• Suppose we want to find the shortest path starting from v1 to any 

node vi

• Let VS be a subset of nodes in G
• Let cost[vi] be the weight of the shortest path from v1 to vi that 

passes through nodes in VS only.
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Dijkstra’s algorithm: code
Algorithm shortestPath()

n = number of nodes in the graph;

for i = 1 to n

 cost[vi] = w(v1, vi);

VS = { v1 };

for step = 2 to n {

 find the smallest cost[vi] s.t. vi is not in VS;

 include vi to VS;

 for (all nodes vj not in VS) {

  if (cost[vj] > cost[vi] + w(vi, vj))

   cost[vj] = cost[vi] + w(vi, vj);

    }

}
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Example for Dijkstra’s algorithm

v2v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞
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Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞
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Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

3 v4 [v1, v2, v4] 0 5 12 9 17
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Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

3 v4 [v1, v2, v4] 0 5 12 9 17

4 v3 [v1, v2, v4, v3] 0 5 12 9 16

5 v5 [v1, v2, v4, v3, v5] 0 5 12 9 16



Complexity of Dijkstra’s algorithm
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All-Pairs Shortest Paths 

• Given a weighted graph G(V,E,w), the all-pairs shortest paths problem 
is to find the shortest paths between all pairs of vertices vi, vj ∈ V. 

• A number of algorithms are known for solving this problem. 
• Matrix multiplication
• Dijkstra algorithm 
• … 

80



All-Pairs Shortest Paths: 

         Matrix-Multiplication Based Algorithm 

• Consider the multiplication of the weighted adjacency matrix with 
itself - except, 

•  replace the multiplication operation in matrix multiplication by addition, 
and the summation operation by minimization. 

• Notice that the product of weighted adjacency matrix with itself 
returns a matrix that contains shortest paths of length 2 between 
any pair of nodes. 

• It follows from this argument that An contains all shortest paths.

81



Analogy of matrix multiplication

82



Matrix-Multiplication Based Algorithm 

83



Time complexity analysis: 
   Matrix-Multiplication Based Algorithm 

• An is computed by doubling powers - i.e., as A, A2, A4, A8, and so 
on. 

• We need log n matrix multiplications, each taking time O(n3). 
• The serial complexity of this procedure is O(n3log n). 
• This algorithm is not optimal, since the best known algorithms 

have complexity O(n3). 

84



APSP using Dijkstra’s SSSP algorithm

• Execute n instances of the single-source shortest path problem, 
one for each of the n source vertices. 

• Complexity is O(n3). 

85



Circuit Problems

86
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Circuits
• A circuit

• A special cycle that passes through every vertex (or edge) in a graph exactly once

• Euler Circuit is a circuit that begins at a vertex v, passes through every edge exactly once, and 
terminates at v. 

• Euler Circuit exists if and only if each vertex touches an even number of edges (i.e., 
has an even degree)

a) Euler’s bridge problem 

and b) its multigraph 

representation



Euler and Hamilton 

• An Euler path is a path that passes through every edge exactly once. 
If it ends at the initial vertex then it is an Euler circuit.

• A Hamiltonian path is a path that passes through every vertex exactly 
once (NOT every edge).   If it ends at the initial vertex then it is 
a Hamiltonian circuit.

• Note:
• In an Euler path you might pass through a vertex more than once.
• In a Hamiltonian path you may not pass through all edges.

88
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Hamilton circuit

• A Hamilton circuit is a cycle that begins at a vertex v, passes through 
every vertex in the graph exactly once, and terminates at v.

• Hamiltonian circuit = visit each vertex once and only once and come 
back to where you started from

• Note: In a Hamiltonian path (or circuit) you may not pass through all 
edges.

• Given a graph, does it have a Hamiltonian circuit ?

90
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Hamilton Circuit: example

b

a

cd

e

f

g

h

i

jkl

m

n

o
p

q

r
s

t
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b

a

cd

e

f

g

h

i

jkl

m

n

o
p

q

r
s

t

Hamilton Circuit: example



TSP problem 
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TSP (The travelling salesman problem )

• Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city exactly 
once and returns to the origin city ? 

• This is an optimization problem

95



The Traveling Salesman Problem (TSP) and the Hamiltonian Circuit 
Problem are closely related but not identical.

• Traveling Salesman Problem (TSP):  Given a set of cities and the 
distances between each pair of cities, the TSP asks for the shortest 
possible route that visits each city exactly once and returns to the 
origin city. It focuses on minimizing the total travel cost (distance, 
time, etc.).

• Hamiltonian Circuit Problem: This problem involves finding a 
Hamiltonian circuit in a graph, which is a cycle that visits each 
vertex exactly once and returns to the starting vertex.  It does not 
consider the weights or costs associated with the edges; it merely 
asks if such a circuit exists.

96



How do we really solve TSP?

• Stochastic Gradient descent
• Simulated annealing
• Genetic algorithms
• Ant colony algorithms
• Randomized algorithms
• Hopfield neural network algorithm  (Nobel Prize for Physics 2024). 

97
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Hopfield net and Traveling Salesman problem

99



Traveling Salesman Problem

• Goal
• Come back to the city A, visiting j = 2 to n (n is number of cities) exactly 

once and minimize the total distance.

• To solve by a Hopfield-Net we need to decide the architecture:
• How many neurons?
• What are the weights?

100
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Hopfield-Net energy function (loss function) for TSP

102



An example solution

103



Comics

104



• Color a map such that two 
regions with a common border 
are assigned different colors.

• Each map can be represented 
by a graph:

• Each region of the map is 
represented by a vertex;

• Edges connect two vertices if the 
regions represented by these 
vertices have a common border.
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Graph Coloring problem



• Definition: A graph has been colored if a color has been 
assigned to each vertex in such a way that adjacent 
vertices have different colors.

• Definition: The chromatic number of a graph is the 
smallest number of colors with which it can be colored.

  In the example above, the chromatic number is 4.
  106

The Graph Coloring Problem



• Definition: A graph is planar if it can be drawn in a plane 
without edge-crossings.

• The four color theorem: For every planar graph, the 
chromatic number is ≤ 4.

 Was posed as a conjecture in the 1850s. Finally proved in 1976 (Appel 
and Haken) by the aid of computers.
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Graph Coloring problem
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Summary

• Graphs can be used to represent many real-life problems. 
• Implementation of Graph ADT 
• There are numerous important graph algorithms.
• We have studied some basic concepts and algorithms. 

• Graph Traversal
• Topological Sort
• Spanning Tree
• Minimum Spanning Tree
• Shortest Path
• Circuit problems 
• Graph coloring.
• … 



Week-12: class review. 
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