COMP1110/1140/6710
Week 11(B)

Graph ADT, Traversal and Graph Algorithms

What is a graph?

* Graphs represent the relationships among data items

* Agraph G consists of
* asetV of nodes (vertices)
* asetE of edges: each edge connects two nodes

* Each node represents an item
* Each edge represents the relationship between two items

Examples of graphs

E— E— Friends

Server 1 Terminal 1

® © ®

. Server 2

Terminal 2

Other examples: electrical and communication networks,
airline routes, flow chart, graphs for planning projects, social
networks, ...

A bit of history of graph theory

m Father of graph
theory, Euler SHED)

1 Konigsberg bridges «f_?
problem (1736) =4

"""”‘"wa-g;

ﬁ”&x

._— -

A bit of history of graph theory

Kirchhoff and Cayley

m Kirchhoff developped the theory
of trees in 1847 to solve the linear
equations in branches and
circuits of an electric network.

m In 1857, Cayley discovered the
trees. Later he engaged in
enumerating the isomers of
saturated hyrocarbons with a
given number of carbon atoms.

Nobel Prize for Chemistry 2024

|E NOBEL PRIZE
IN CHEMISTRY 2024

David Demis
Baker Hassabis

“for computational “for protein structure prediction”
protein design”®

* Protein folding is essential a graph matching problem.

Hamilton cycle

m In 1859, Hamilton used a
regular solid dodecahedron
whose 20 corners are labeled
with famous cities.

m [he player is challenged to

travel “around the world” by

finding a closed circuit along
the edges, passing through

each city exactly once.

Formal Definition of graph

* The set of nodes is denoted as 'V

* Forany nodes u andy, if uand v are connected by an
edge, such edge is denoted as (u, v)

\'

(ul V) -

* The set of edges isdenotedas E u
* Agraph G is defined as a pair: G= (V, E)

Terminology

*G={V, E}

* Agraph G consists of two sets
e AsetV of vertices, or nodes
* Aset E of edges

* A subgraph
* Consists of a subset of a graph’s vertices and a subset of its edges

* Adjacent vertices
* Two vertices that are joined by an edge

10

Terminology

* A path between two vertices

* Asequence of edges that begins at one vertex and ends at another vertex
* May pass through the same vertex more than once

* Asimple path
* A path that passes through a vertex only once
* Acycle
* A path that begins and ends at the same vertex
* Asimple cycle
* Acycle that does not pass through a vertex more than once

14 -11

Adjacent

* Two nodes u andv are said to be adjacentif (u,v) e E

(ul V) e

/

12

Path and simple path

* Apath fromv, tov,is asequence of nodes vy, Vv,, ..., v, that
are connected by edges (v4, V5), (Vo, V3), «-es (Viiqs Vi)

* A pathis called a simple path if every node appears at most
once.

13

Cycle and simple cycle

* Acycle is a path that begins and ends at the same node

* Asimple cycle is a cycle if every node appears at most
once, except for the first and the last nodes

14

Connected graph

* Agraph G is connected if there exists path between every pair of
distinct nodes; otherwise, it is disconnected

15

Example of disconnected graph

Connected component

* If agraph is disconnect, it can be partitioned into a
number of graphs such that each of them is
connected. Each such graph is called a connected

component.
\. V7. v
‘o N 8
Vv \

17

Complete graph

* Agraphis complete if each pair of distinct nodes has an edge

>
sz

Van
srtaze

18

Subgraph

* Asubgraph of agraph G =(V, E) is a graph H = (U, F) such that
UcVand FcE.

19

Weighted graph

* Ifeach edge in G is assigned a weight, it is called a weighted graph,
G=G(V,E,W).

Chicago 1000 New York

5000 3500

Houston

20

Directed graph (digraph)

* All previous graphs are undirected graph
* |f each edge in E has a direction, itis called a directed edge

* Adirected graph is a graph where every edges is a directed
edge

Chicago 1000 New York

-@

«— Directed edge
3500

2000

Houston

21

More on directed graph

)

* If (X, y) is adirected edge, we say
* yisadjacenttox
* yissuccessorof x
* Xis predecessor ofy

* In a directed graph, directed path, directed cycle can be
defined similarly

22

Property of graph

* Aundirected graph that is connected and has no cycle is
a tree.

* A tree with n nodes must have exactly n-1 edges.

* A connected undirected graph with n nodes must have at
least n-1 edges.

23

Graphs As ADTs

* Graphs form an important family of ADT.

* Two options for defining graphs

 \ertices contain values
e Vertices do not contain values

* Operations of the ADT graph
* Create an empty graph
* Determine whether a graph is empty
* Determine the number of vertices in a graph
* Determine the number of edges in a graph

24

Graphs As ADTs

* Operations of the ADT graph (Continued)

* Determine whether an edge exists between two given vertices; for
weighted graphs, return weight value

Insert a vertex in a graph whose vertices have distinct search keys that
differ from the new vertex’s search key

Insert an edge between two given vertices in a graph

Delete a particular vertex from a graph and any edges between the vertex
and other vertices

Delete the edge between two given vertices in a graph
Retrieve from a graph the vertex that contains a given search key

25

Implementing Graphs

* Most common implementations of a graph
* Adjacency matrix
* Adjacency linked list

* Adjacency matrix

* Adjacency matrix for a graph with n vertices numbered 0, 1, ..., n =1

* An n by n array matrix such that matrix[i][j] is
* 1 (ortrue)ifthereisan edge from vertexito vertex j
* O (orfalse)if thereis no edge from vertex i to vertex |

14 -26

Implementing Graph

* Adjacency matrix
* Represent a graph using a two-dimensional array

* Adjacency linked list
* Represent a graph using n linked lists where n is the number of vertices

27

Adjacent Matrix

0 P

T Q

2 R

3 S

4 T

3 5 W

6 X

7 Y

4 8 Z

Figure 14.6

a) A directed graph and b) its adjacency matrix

28

Adjacency matrix

* Adjacency matrix for a weighted graph with n vertices numbered 0, 1, ..., n -1

* An n by n array matrix such that matrix[i][j] is
* The weight that labels the edge from vertexito vertex j if there is an edge fromitoj

* oo if there is no edge from vertex i to vertex |

(@) 0 : (b) o 1 2 3
A S A B C D

®
\1 0 Aleo 8 o« 6

14 -29

Adjacency matrix for directed graph

1 2 3 4 5

Vi

Vo

V3

Vg

Vs

0

1

0

0

0

oNNolNoelNe

| O || O

R OO | O

R O|FR |k

olNolNolNe

30

Adjacency matrix for weighted undirected graph

‘e @@ 1u[=[5][=]=]
2 Vy| D || 24|

V, Vs 3 v3|0|2]||3|7
. 4 Vvy|©|4|3|>|8

S5 Vg|© [0 | 7| 8|

31

Adjacency linked list for directed graph

aa b W N B

-V,
-V,

-V, =V,

— V3 — V,

32

Adjacency list for weighted undirected graph

R N AN

V,(9)
V1(3)
V,(2)
V,(4)
V3(7)

3 I

V3(2) > Vv4(4)
V4(3) — vs(7)
V3(3) — Vs5(8)
V4(8)

33

Adjacency list

An adjacency list for a graph with n vertices numbered 0, 1, ..., n -1
* Consists of n linked lists

* Theithlinked list has a node for vertex j if and only if the graph contains an
edge from vertex i to vertexj

* This node can contain either
* Vertexj’svalue, if any
* Anindication of vertex j’s identity

34

Adjacency list

(@)

Figure 14.8
a) A directed graph and

b) its adjacency list

Y

Y

Y

\

Y

Y

NN

Y

Y

NENE

\J

35

Adjacency list

* Adjacency list for an undirected graph
* Treats each edge as if it were two directed edges in opposite directions

Figure 14.9
a) A weighted undirected graph and b) its adjacency list

14 -36

Recap:

Two implementations (representations)
()

nnnnn
uuuuu

.....
"JL_ nnnnn
A= |voLwou
nnnnn
uuuuu
n ; ; z i
.....

An undirected graph and its adjacency matrix representation.

© BESBEY
BERHEgHESHY
SN EER BE 7
‘ BESH
A E SR E s B 11

An undirected graph and its adjacency list representation.

37

Comparison:
Adjacency matrix Versus Adjacency list

* Two common operations on graphs
1. Determine whether there is an edge from vertex i to vertex |
2. Find all vertices adjacent to a given vertex i

* Adjacency matrix
e Supports operation 1 more efficiently
* Adjacency list
e Supports operation 2 more efficiently
* Often requires less space than an adjacency matrix

38

Pros and Cons of the two implementations

* Adjacency matrix

* Allows us to determine whether there is an edge from node i to nodejin
O(1) time;

* Adjacency list
* Allows us to find all nodes adjacent to a given node j efficiently
* |f the graph is sparse, adjacency list requires less space

39

Graph problems / Graph algorithms

Problems related to Graph

Graph Traversal
Topological Sort
Minimum Spanning Tree
Shortest Path

All-pair shortest path
Euler path

Hamilton circuit
Travelling Salesman Problem
The four colour problem.
Graph Cut problem

Max flow and Min Cut

41

Graph Traversal

Graph Traversal Algorithm

* To traverse a tree, we use tree traversal algorithms like pre-order,
In-order, and post-order to visit all the nodes in a tree

* Similarly, graph traversal algorithm tries to visit all the nodes it can
reach.

* If a graph is disconnected, a graph traversal that begins ata node v
will visit only a subset of nodes, thatis, the connected component
containing v.

43

Two basic traversal algorithms

* Depth-first-search (DFS)

* After visit node v, DFS strategy proceeds along a path from v as deeply into the graph
as possible before backing up

* Breadth-first-search (BFS)

* After visit node v, BFS strategy visits every node adjacent to v before visiting any
other nodes

44

Graph Traversals

Figure 14.10

Visitation order for a) a depth-first search; b) a breadth-first search

14 -45

Depth-First Search

* Depth-first search (DFS) traversal

* Goes as deeply into the graph as possible from a vertex before
backtracking

* DFS strategy looks similar to pre-order. From a given node v, it first visits
itself. Then, recursively visit its unvisited neighbors one by one.

* Arecursive implementation is simple
* An iterative implementation uses a stack

46

Recursive Depth-First Search

e Recursive DFS traversal can be defined as follows:

dfs(v)
print(v);
mark v as visited

for (each unvisited vertex u adjacent to v)
dfs(u)

47

Iterative Depth-First Search

* |terative DFS traversal
dfs(v)
s.createStack()
s.push(v)
mark v as visited
while (!s.isEmpty()) {
if (no unvisited vertices adjacent to the vertex on the stack

top)
s.pop() // backtrack

} else {
select an unvisited vertex u adjacent to the vertex on

the
stack top
s.push(u)
mark u as visited
}

48

lterative Depth-First Search

Node visited

o
\

Node visited

Stack (bottom to top)

(cont'd)
(backtrack)
f
(backtrack)
(backtrack)

Stack (bottom to top) h

PKQ O O T D

a
ab

abc
abcd
abcdg
abcdge

(backtrack)
(backtrack)
(backtrack)
(backtrack)
|

(backtrack)
(backtrack)

abcdg
abcdgf
abcdg
abcd
abcdh
abcd
abc
ab

a

ali

a
empty

49

Breadth-First Search

* Breadth-first search (BFS) traversal

* Visits every vertex adjacent to a vertex v that it can before visiting any
other vertex

* Afirstvisited, first explored strategy

* Aniterative implementation uses a queue
* Arecursive implementation is possible, but not simple

50

Breadth-first search (BFS)

* BFS strategy looks similar to level-order. From a given node v, it
first visits itself. Then, it visits every node adjacent to v before
visiting any other nodes.

1. Visitv
2. Visit allv’s neigbours
3. Visit all v’s neighbours’ neighbours

* Similar to level-order, BFS is based on a queue.

51

lterative Breadth-First Search

* |terative BFS traversal
bfs(v)
g.createQueue()
g.enqueue(v)
mark v as visited
while (!g.isEmpty()) {
w = q.dequeueg()
for (each unvisited vertex u adjacent to w) {
mark u as visited
g.enqueue(u)

52

lterative Breadth-First Search

\‘ Node visited Queue (front to back)
- ‘ (cont'd)
C fic
\ e fice
Ice
g iceg
. ceg
Node visited Queue (front to back) eq
a a d egd
(empty) gd
b b q
f ol (empty)
h h

fi (empty)

BFS example

e Start from vg

Vv ¥V ¥

Visit | Queue
(front to
back)

Vs Vs
empty

V3 V3

Vy Vs, Vg
Vq

Vo Vg, Vo
Vo
empty

Vi Vi

54

Topological order and topological sorting

55

Topological order

Consider the prerequisite structure for courses:

Each node x represents a course x
(X, y) represents that course x is a prerequisite to coursey
Note that this graph should be a directed graph without cycles (called a directed acyclic graph).

A linear order to take all 5 courses while satisfying all prerequisites is called a topological order.
E.g.

56

Topological sort

* Arranging all nodes in the graph in a topological order

Algorithm TopoSort

n=|V[;

fori=1ton{
select a node v that has no successor;
aList.add(1, v);
delete node v and its edges from the graph;

}

return alList;

57

Example: topo-sort
O =@ & ®

1. d has no successor! 2. Both b and e have no
Choose d! successor! Choose el

Y o0 -
G

3. Both b and c have 4. Only b has no 5. Choose a!
no successor! successor!
Choose c! Choose b! The topological order is a,b,c,e,d

58

Spanning tree and MST

59

Spanning Tree

* Given a connected undirected graph G, a spanning tree of Gis a
subgraph of G that contains all of G’s nodes and enough of its edges to
form a tree.

Spanning tree is not uniquel

60

DFS spanning tree

* Generate the spanning tree edge during the DFS traversal.

Algorithm dfsSpanningTree(v)

mark v as visited,;

for (each unvisited node u adjacent to v) {
mark the edge from u to v;
dfsSpanningTree(u);

}

* Similarto DFS, the spanning tree edges can be generated based on BFS traversal.

61

Minimum (cost) Spanning Tree

* Consider a connected undirected graph where
* Each node x represents a city x

* Each edge (X, y) has a number which measures the cost of placing telephone
line between city x and city y

* Problem: connecting all cities while minimizing the total cost

* Solution: find a spanning tree with minimum total weight, that s,
minimum spanning tree

62

Minimum Spanning Tree

* A spanning tree of an undirected graph G is a subgraph of G that is
a tree containing all the vertices of G.

* In a weighted graph, the weight of a subgraph is the sum of the
weights of the edges in the subgraph.

* Aminimum spanning tree (MST) for a weighted undirected graph is
a spanning tree with minimum weight.

63

Minimum Spanning Tree

An undirected graph and its minimum spanning tree.

64

Formal definition of minimum spanning tree

* Given a connected undirected graph G.
* Let T be a spanning tree of G.
e cost(T) = 2., .;weight(e)

* The minimum spanning tree is a spanning tree T which minimizes
cost(T)

Vo
V].) V3 Mini
iInimum
.J/ .—— Spanning
tree

V, Vs

65

Prim's Algorithm for MST

* Prim's algorithm for finding an MST is a greedy algorithm.
» Start by selecting an arbitrary vertex, include it into the current MST.

* Grow the current MST by inserting into it the vertex closest to one of the
vertices already in current MST.

66

Prim’s algorithm (Il)

Algorithm PrimAlgorithm(v)

* Mark node v as visited and include it in the minimum spanning
tree;

* while (there are unvisited nodes) {

* find the minimum edge (v, u) between a visited node v and an unvisited
node u;

* mark u as visited;
* add both v and (v, u) to the minimum spanning tree;

}

67

Prim’s algorithm (l)

V V
‘lﬁ V3 Vi 2 Vs
%, Ve V; 3V5
\Y;)
‘1%) &%)
4 V5 4 V5

68

Shortest path problem

Shortest path

* Consider aweighted directed graph
* Each node x represents a city x

* Each edge (X, y) has a number which represent the cost of traveling from
city xto cityy

* Problem: find the minimum cost to travel from city xto city y
* Solution: find the shortest path fromxtoy

70

Single-Source Shortest Paths

* For aweighted graph G = (V,E,w), the single-source shortest paths
problem is to find the shortest paths from a vertex v e Vto all other
vertices in V.

* Dijkstra's algorithm is similar to Prim's algorithm.

* maintains a set of nodes for which the shortest paths are known.

* grow this setbased on the node closest to source using one of the nodes
in the current shortest path set.

71

Formal definition of shortest path

* Given a weighted directed graph G.

* Let P be apath of G from xtoy.

e cost(P) = 2. .pweight(e)

* The shortest path is a path P which minimizes cost(P)

V Y2 2 V3

1

.J:ZE/ Shortest Path
V, Vs

72

Dijkstra’s algorithm

 Consider agraph G, each edge (u, v) has a weight w(u, v) > 0.

* Suppose we want to find the shortest path starting from v, to any
node v,

e Let VS be asubset of nodesin G

* Let cost[v;] be the weight of the shortest path from v, to v, that
nasses through nodes in VS only.

Dijkstra’s algorithm: code

Algorithm shortestPath()
n = number of nodes in the graph;
fori=1ton
costlv;] = w(vq, v));
VS ={v,};
forstep=2ton{
find the smallest cost[v;] s.t. v;is ot in VS;
include v; to VS;
for (all nodes v, not in VS) {
if (cost[v;] > cost[v;] + w(v;, v)))

cost[v;] = cost[v;] + w(v;, v));

74

Example for Dijkstra’s algorithm

cost[v,]

cost[v,]

cost[Vs]

75

Example for Dijkstra’s algorithm

cost[v,]

cost[Vs]

76

Example for Dijkstra’s algorithm

v | VS cost[v,] cost[vs]
[V4] - . %0

Vo | [Vy, V2] 00 9 00

V, | [V1, Vo, V4] 12 9 17

77

Example for Dijkstra’s algorithm

v | VS cost[v,] | cost[v,] | cost[vs] cost[v,] cost[vs]
1 [V,] 0 5 00 00 00
2| Vy | [Vq, Vo 0 5 00 9 00
3| Vs | [Vq, Vo, V4] 0 5 12 9 17
41V3 | [Vy, Vy, Vg, V3] 0 5 12 9 16
S| Vs [[V, Vo, Vg, V3 V5] | O 5 12 9 16

78

Complexity of Dijkstra’s algorithm

The time complexity of Dijkstra’s Algorithm is typically O(V2) when using a simple array
implementation or O((V + E) log V) with a priority queue, where V represents the number of vertices
and E represents the number of edges in the graph. The space complexity of the algorithm is O(V) for

storing the distances and predecessors for each node, along with additional space for data structures
like priority queues or arrays.

Aspect Complexity

Time Complexity O((V + E) log V)

Space Complexity o)

79

All-Pairs Shortest Paths

* Given aweighted graph G(V,E,w), the all-pairs shortest paths problem
IS to find the shortest paths between all pairs of vertices v, v eV.

* A number of algorithms are known for solving this problem.
* Matrix multiplication
* Dijkstra algorithm

80

All-Pairs Shortest Paths:

Matrix-Multiplication Based Algorithm

* Consider the multiplication of the weighted adjacency matrix with
itself - except,

* replace the multiplication operation in matrix multiplication by addition,
and the summation operation by minimization.

* Notice that the product of weighted adjacency matrix with itself
returns a matrix that contains shortest paths of length 2 between
any pair of nodes.

* [t follows from this argument that A” contains all shortest paths.

81

Analogy of matrix multiplication

 Compute the matrix product C=A - B of two n X n matrices A
and B. Then, fori,j=1, 2,..., n, we compute

Cg = ;aﬂc »b,g.

s _ . _ 1
* [f we make the substitutionsin l,—,(-m) = {S(g}{lz(km) + Wi S
1D 5 q

w—b

1™ ¢

min —)" (+)

+—>-

82

Matrix-Multiplication Based Algorithm

— — T
PmRRgagge W®IRINZ RS
Yt Yo Yom— O~ O AN F D
Reovma Yo R Y wommagao gy
meRPYRoRrRgY mHE82o 8 EY
m Bamomea R Y mHamOom—~ 4 Y
Rg TE-=238828%
Ry ™Aoo rd A8 Y
QR o BB LraEEY
QY orndrviBidnd
T _~

|

%

&
— — —
BABAEN gL mwm g dAn g Ee
R RALImMAOo—~ O Fm EN—~ O
e o Y mmoma gaoc ¥y
B 88808 dd mHPdEdod
e PO A Y mtamom— ¢y
BEro R RBBEE HFEAo L RE LA
mMBOELEEELEE mAOEL AL LY
NO KL YEABEBE o LB E AR E Y
CHBRALAEERE R AERBEALREY
— - _

I I

— =+

= =

83

Time complexity analysis:
Matrix-Multiplication Based Algorithm

* A" is computed by doubling powers -i.e., as A, A%, A4, A%, and so
on.

* We need log n matrix multiplications, each taking time O(n3).
* The serial complexity of this procedure is O(n3log n).

* This algorithm is not optimal, since the best known algorithms
have complexity O(n?3).

84

APSP using Dijkstra’s SSSP algorithm

* Execute n instances of the single-source shortest path problem,
one for each of the n source vertices.

* Complexity is O(n3).

85

Circuit Problems

Circuits

* Acircuit
* Aspecial cycle that passes through every vertex (or edge) in a graph exactly once

* Euler Circuit is a circuit that begins at a vertex v, passes through every edge exactly once, and
terminates at v.

* Euler Circuit exists if and only if each vertex touches an even number of edges (i.e.,
has an even degree)

(@) (b)

a) Euler’s bridge problem

and b) its multigraph

representation

14 -87

Euler and Hamilton

* An Euler path is a path that passes through every edge exactly once.
If it ends at the initial vertex then it is an Euler circuit.

A Hamiltonian path is a path that passes through every vertex exactly
once (NOT every edge). If it ends at the initial vertex then it is
a Hamiltonian circuit.

* Note:
* In an Euler path you might pass through a vertex more than once.
* In a Hamiltonian path you may not pass through all edges.

88

Exercise

Which of the following graphs have a Eulerian circuit?

g ii) iii)

Therefore, a Eulerian circuit always exist if all of its vertices are of even degree.

In other words, a Eulerian circuit always exist if there are not odd degree vertices.

89

Hamilton circuit

* A Hamilton circuitis a cycle that begins at a vertex v, passes through
every vertex in the graph exactly once, and terminates atv.

* Hamiltonian circuit = visit each vertex once and only once and come
back to where you started from

* Note: In a Hamiltonian path (or circuit) you may not pass through all
edges.

* Given a graph, does it have a Hamiltonian circuit ?

90

Hamilton Circuit: example

Hamilton Circuit: example

14 -92

TSP problem

The Traveling Salesman Problem

Starting from city 1, the salesman
must travel to all cities once
before returning home

The distance between each city is
given, and is assumed to be the
same in both directions

Only the links shown are to be
used

Objective - Minimize the total
distance to be travelled

94

TSP (The travelling salesman problem)

* Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly
once and returns to the origin city ?

* This is an optimization problem

—>

95

The Traveling Salesman Problem (TSP) and the Hamiltonian Circuit
Problem are closely related but not identical.

* Traveling Salesman Problem (TSP): Given a set of cities and the
distances between each pair of cities, the TSP asks for the shortest
possible route that visits each city exactly once and returns to the
origin city. It focuses on minimizing the total travel cost (distance,
time, etc.).

* Hamiltonian Circuit Problem: This problem involves finding a
Hamiltonian circuit in a graph, which is a cycle that visits each
vertex exactly once and returns to the starting vertex. It does not
consider the weights or costs associated with the edges; it merely
asks if such a circuit exists.

96

How do we really solve TSP?

* Stochastic Gradient descent

* Simulated annealing

* Genetic algorithms

* Ant colony algorithms

* Randomized algorithms

* Hopfield neural network algorithm (Nobel Prize for Physics 2024).

97

Payawi|3 SePiIN :suoleysni||

John J. Hopfield Geoffrey E. Hinton

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

98

Hopfield net and Traveling Salesman problem

Hopfield Net

yi= 0 (Z w;iy; + bi)

JES!

+1ifz>0
G(Z)z{—lifzso

A symmetric network:
Wij = Wji

Traveling Salesman Problem

e Goal

* Come backto the city A, visiting j=2to n (n is number of cities) exactly
once and minimize the total distance.

* To solve by a Hopfield-Net we need to decide the architecture:
* How many neurons?
* What are the weights?

100

Solving TSP by continuous Hopfield model:

1. Design the network structure

2. Define an energy function

- punish viclation of (strong) constraint with large amount of
energy

— lower energy associates to shorter circuits (weak constraint)

3. Find weight matrix from the energy function such that energy

always decreases whenever the network moves (according to
H model and W)

101

Hopfield-Net energy function (loss function) for TSP

The distance between the city S; and the city S; is d;;. To find the shortest path, the

network will minimize the function :

1,7,k

Etsp = Zdzszkxg k+1t+ 5 Z wa - 1))2 + Z me - 1))) (7)

-

=1 7=1
' a8
Condition
B
C /,,,O\
/O)/’ \\
F
_-0D O\\
S
A .
_0 E

102

An example solution

~

\ioN 120 500 o] [260) [88] | sok | 5736

| 39 ' | Plo
Iterations: 24938 Min. Tour Length: 86.624 Iterations: 30188 Min. Tour Length: 15.102 Y

17/\

Al X /,‘d

o

7" ‘a’r"‘“‘% .'a e

103

Comics

BRUTE-FORCE
SOL-UTT1ON:

O(n!)

DyYyNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELLUNG ON ERAY:

(1)

STILL WORKING
ON YOUR ROUTEY
.

N

SHUT THE
HEW UF

104

Graph Coloring problem

* Color a map such thattwo France
regions with a common border :
are assigned different colors.

* Each map can be represented
by a graph:
* Eachregion ofthe map is
represented by a vertex;

* Edges connect two vertices if the

regions represented by these
vertices have a common border.

105

The Graph Coloring Problem

* Definition: A graph If a color has been
assigned to each vertex in such a way that adjacent
vertices have different colors.

o«

* Definition: The of a graph is the
smallest number of colors with which it can be colored.

In the example above, the chromatic numberis 4.

106

Graph Coloring problem

* Definition: A graph s If itcan be drawn in a plane
without edge-crossings.

ﬁ

* The four color theorem: For every planar graph, the
chromatic numberis < 4.

Was posed as a conjecture in the 1850s. Finally proved in 1976 (Appel
and Haken) by the aid of computers.

107

Summary

* Graphs can be used to represent many real-life problems.
* Implementation of Graph ADT
* There are numerous important graph algorithms.

* We have studied some basic concepts and algorithms.
* Graph Traversal
* Topological Sort

Spanning Tree

Minimum Spanning Tree

Shortest Path

Circuit problems

Graph coloring.

108

Week-12: class review.

J: Java

J1 Introductory Java, part 1 Q@@O@
J2 Introductory Java, part 2 QO

J3 Arrays Q@@O@

J5 Control Flow: Branching Q@@O@
J6 Control Flow: Iteration Q@@O@
J9 Higher-order programming QO@
J12 Generics Q@@O@

J14 Collections Q@@O@

N5 Exceptions OO

O: Object Orientation

O1 Objects and Classes, part 1 Q @ @ O @
02 Objects and Classes, part 2 Q @ @ O @
04 Inheritance Q @ @ O @

S: Software Engineering

S1 Software Development Tools Q O @

S4 Unit testing QO@
S5 Software Design Q@@

C: Core Computer Science

C1 Recursion Q@O0 B

Cl(part2) Recursion revisited)&

C2 Computational Complexity QO@
C3 Graph Traversal Q@

C4 Hash Functions Q@o

C6 Files QD@D
C7 Threads QOB

A: Abstract Data Types

Al ADTs:Lists Q@O S

A2 List Implementations @O@
A3/A6 Sets&Maps OO
A4 Sets: HashSet Q@O@

A5 Trees Q@O@

109

	Slide 1: COMP1110/1140/6710 Week 11(B)
	Slide 2: Tree versus Graph
	Slide 3: What is a graph?
	Slide 4: Examples of graphs
	Slide 5: A bit of history of graph theory
	Slide 6: A bit of history of graph theory
	Slide 7: Nobel Prize for Chemistry 2024
	Slide 8: Hamilton cycle
	Slide 9: Formal Definition of graph
	Slide 10: Terminology
	Slide 11: Terminology
	Slide 12: Adjacent
	Slide 13: Path and simple path
	Slide 14: Cycle and simple cycle
	Slide 15: Connected graph
	Slide 16: Example of disconnected graph
	Slide 17: Connected component
	Slide 18: Complete graph
	Slide 19: Subgraph
	Slide 20: Weighted graph
	Slide 21: Directed graph (digraph)
	Slide 22: More on directed graph
	Slide 23: Property of graph
	Slide 24: Graphs As ADTs
	Slide 25: Graphs As ADTs
	Slide 26: Implementing Graphs
	Slide 27: Implementing Graph
	Slide 28: Adjacent Matrix
	Slide 29: Adjacency matrix
	Slide 30: Adjacency matrix for directed graph
	Slide 31: Adjacency matrix for weighted undirected graph
	Slide 32: Adjacency linked list for directed graph
	Slide 33: Adjacency list for weighted undirected graph
	Slide 34: Adjacency list
	Slide 35: Adjacency list
	Slide 36: Adjacency list
	Slide 37: Recap: Two implementations (representations)
	Slide 38: Comparison: Adjacency matrix Versus Adjacency list
	Slide 39: Pros and Cons of the two implementations
	Slide 40: Graph problems / Graph algorithms
	Slide 41: Problems related to Graph
	Slide 42: Graph Traversal
	Slide 43: Graph Traversal Algorithm
	Slide 44: Two basic traversal algorithms
	Slide 45: Graph Traversals
	Slide 46: Depth-First Search
	Slide 47: Recursive Depth-First Search
	Slide 48: Iterative Depth-First Search
	Slide 49: Iterative Depth-First Search
	Slide 50: Breadth-First Search
	Slide 51: Breadth-first search (BFS)
	Slide 52: Iterative Breadth-First Search
	Slide 53: Iterative Breadth-First Search
	Slide 54: BFS example
	Slide 55: Topological order and topological sorting
	Slide 56: Topological order
	Slide 57: Topological sort
	Slide 58: Example: topo-sort
	Slide 59: Spanning tree and MST
	Slide 60: Spanning Tree
	Slide 61: DFS spanning tree
	Slide 62: Minimum (cost) Spanning Tree
	Slide 63: Minimum Spanning Tree
	Slide 64: Minimum Spanning Tree
	Slide 65: Formal definition of minimum spanning tree
	Slide 66: Prim's Algorithm for MST
	Slide 67: Prim’s algorithm (II)
	Slide 68: Prim’s algorithm (I)
	Slide 69: Shortest path problem
	Slide 70: Shortest path
	Slide 71: Single-Source Shortest Paths
	Slide 72: Formal definition of shortest path
	Slide 73: Dijkstra’s algorithm
	Slide 74: Dijkstra’s algorithm: code
	Slide 75: Example for Dijkstra’s algorithm
	Slide 76: Example for Dijkstra’s algorithm
	Slide 77: Example for Dijkstra’s algorithm
	Slide 78: Example for Dijkstra’s algorithm
	Slide 79: Complexity of Dijkstra’s algorithm
	Slide 80: All-Pairs Shortest Paths
	Slide 81: All-Pairs Shortest Paths: Matrix-Multiplication Based Algorithm
	Slide 82: Analogy of matrix multiplication
	Slide 83: Matrix-Multiplication Based Algorithm
	Slide 84: Time complexity analysis: Matrix-Multiplication Based Algorithm
	Slide 85: APSP using Dijkstra’s SSSP algorithm
	Slide 86: Circuit Problems
	Slide 87: Circuits
	Slide 88: Euler and Hamilton
	Slide 89
	Slide 90: Hamilton circuit
	Slide 91: Hamilton Circuit: example
	Slide 92: Hamilton Circuit: example
	Slide 93: TSP problem
	Slide 94
	Slide 95: TSP (The travelling salesman problem)
	Slide 96
	Slide 97: How do we really solve TSP?
	Slide 98
	Slide 99: Hopfield net and Traveling Salesman problem
	Slide 100: Traveling Salesman Problem
	Slide 101
	Slide 102: Hopfield-Net energy function (loss function) for TSP
	Slide 103: An example solution
	Slide 104: Comics
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Summary
	Slide 109: Week-12: class review.

