
COMP1110/1140/6710
Week 11(B)

Graph ADT, Traversal and Graph Algorithms

1

Tree versus Graph

2

3

What is a graph?

• Graphs represent the relationships among data items
• A graph G consists of

• a set V of nodes (vertices)
• a set E of edges: each edge connects two nodes

• Each node represents an item
• Each edge represents the relationship between two items

node

edge

4

Examples of graphs

H

H

C HH

Molecular Structure

Server 1

Server 2

Terminal 1

Terminal 2

Computer Network

Other examples: electrical and communication networks,
airline routes, flow chart, graphs for planning projects, social

networks, …

A bit of history of graph theory

5

A bit of history of graph theory

6

Nobel Prize for Chemistry 2024

• Protein folding is essential a graph matching problem.
7

Hamilton cycle

8

9

Formal Definition of graph

• The set of nodes is denoted as V
• For any nodes u and v, if u and v are connected by an

edge, such edge is denoted as (u, v)

• The set of edges is denoted as E
• A graph G is defined as a pair: G= (V, E)

v

u

(u, v)

Terminology

• G = {V, E}
• A graph G consists of two sets

• A set V of vertices, or nodes
• A set E of edges

• A subgraph
• Consists of a subset of a graph’s vertices and a subset of its edges

• Adjacent vertices
• Two vertices that are joined by an edge

10

14 -11

Terminology

• A path between two vertices
• A sequence of edges that begins at one vertex and ends at another vertex
• May pass through the same vertex more than once

• A simple path
• A path that passes through a vertex only once

• A cycle
• A path that begins and ends at the same vertex

• A simple cycle
• A cycle that does not pass through a vertex more than once

12

Adjacent

• Two nodes u and v are said to be adjacent if (u, v)  E

v X

w
u

(u, v)

u and v are adjacent
v and w are not adjacent

13

Path and simple path

• A path from v1 to vk is a sequence of nodes v1, v2, …, vk that
are connected by edges (v1, v2), (v2, v3), …, (vk-1, vk)

• A path is called a simple path if every node appears at most
once.

v1

v2

v4

v3

v5

- v2, v3, v4, v2, v1 is a path

- v2, v3, v4, v5 is a path, also

it is a simple path

14

Cycle and simple cycle

• A cycle is a path that begins and ends at the same node
• A simple cycle is a cycle if every node appears at most

once, except for the first and the last nodes

v1

v2

v4

v3

v5

- v2, v3, v4, v5 , v3, v2 is a cycle

- v2, v3, v4, v2 is a cycle, it is

also a simple cycle

15

Connected graph

• A graph G is connected if there exists path between every pair of
distinct nodes; otherwise, it is disconnected

v1

v4

v3

v5

v2

This is a connected graph because there exists path
between every pair of nodes

16

Example of disconnected graph

v1

v4

v3

v5

v2

This is a disconnected graph because there does not
exist path between some pair of nodes, says, v1 and v7

v7

v6

v8

v9

17

Connected component

• If a graph is disconnect, it can be partitioned into a
number of graphs such that each of them is
connected. Each such graph is called a connected
component.

v1

v4

v3

v5

v2 v7

v6

v8

v9

18

Complete graph

• A graph is complete if each pair of distinct nodes has an edge

Complete graph
with 3 nodes

Complete graph
with 4 nodes

19

Subgraph

• A subgraph of a graph G =(V, E) is a graph H = (U, F) such that
U  V and F  E.

v1

v4

v3

v5

v2

G

v4

v3

v5

v2

H

20

Weighted graph

• If each edge in G is assigned a weight, it is called a weighted graph,
G=G(V,E,W).

Houston

Chicago
1000

2000
3500

New York

21

Directed graph (digraph)

• All previous graphs are undirected graph
• If each edge in E has a direction, it is called a directed edge
• A directed graph is a graph where every edges is a directed

edge

Directed edge

Houston

Chicago
1000

2000
3500

New York

22

More on directed graph

• If (x, y) is a directed edge, we say
• y is adjacent to x
• y is successor of x
• x is predecessor of y

• In a directed graph, directed path, directed cycle can be
defined similarly

yx

23

Property of graph

• A undirected graph that is connected and has no cycle is
a tree.

• A tree with n nodes must have exactly n-1 edges.

• A connected undirected graph with n nodes must have at
least n-1 edges.

Graphs As ADTs

• Graphs form an important family of ADT.

• Two options for defining graphs
• Vertices contain values
• Vertices do not contain values

• Operations of the ADT graph
• Create an empty graph
• Determine whether a graph is empty
• Determine the number of vertices in a graph
• Determine the number of edges in a graph

24

Graphs As ADTs

• Operations of the ADT graph (Continued)
• Determine whether an edge exists between two given vertices; for

weighted graphs, return weight value
• Insert a vertex in a graph whose vertices have distinct search keys that

differ from the new vertex’s search key
• Insert an edge between two given vertices in a graph
• Delete a particular vertex from a graph and any edges between the vertex

and other vertices
• Delete the edge between two given vertices in a graph
• Retrieve from a graph the vertex that contains a given search key

25

14 -26

Implementing Graphs

• Most common implementations of a graph
• Adjacency matrix
• Adjacency linked list

• Adjacency matrix
• Adjacency matrix for a graph with n vertices numbered 0, 1, …, n – 1

• An n by n array matrix such that matrix[i][j] is
• 1 (or true) if there is an edge from vertex i to vertex j
• 0 (or false) if there is no edge from vertex i to vertex j

27

Implementing Graph

• Adjacency matrix
• Represent a graph using a two-dimensional array

• Adjacency linked list
• Represent a graph using n linked lists where n is the number of vertices

Adjacent Matrix

Figure 14.6

a) A directed graph and b) its adjacency matrix

28

14 -29

Adjacency matrix
• Adjacency matrix for a weighted graph with n vertices numbered 0, 1, …, n – 1

• An n by n array matrix such that matrix[i][j] is
• The weight that labels the edge from vertex i to vertex j if there is an edge from i to j
•  if there is no edge from vertex i to vertex j

30

Adjacency matrix for directed graph

v1

v4

v3

v5

v2

G

1 2 3 4 5

v1 v2 v3 v4 v5

1 v1 0 1 0 0 0

2 v2 0 0 0 1 0

3 v3 0 1 0 1 0

4 v4 0 0 0 0 0

5 v5 0 0 1 1 0

Matrix[i][j] = 1 if (vi, vj)E
 0 if (vi, vj)E

31

Adjacency matrix for weighted undirected graph

v1

v4

v3

v5

v2

G

1 2 3 4 5

v1 v2 v3 v4 v5

1 v1 ∞ 5 ∞ ∞ ∞

2 v2 5 ∞ 2 4 ∞

3 v3 0 2 ∞ 3 7

4 v4 ∞ 4 3 ∞ 8

5 v5 ∞ ∞ 7 8 ∞

Matrix[i][j] = w(vi, vj) if (vi, vj)E or (vj, vi)E
 ∞ otherwise

5
2

3 7
8

4

32

Adjacency linked list for directed graph

v1

v4

v3

v5

v2

G

1 v1 → v2

2 v2 → v4

3 v3 → v2 → v4

4 v4

5 v5 → v3 → v4

33

Adjacency list for weighted undirected graph

v1

v4

v3

v5

v2

G

5
2

3 7
8

4

1 v1 → v2(5)

2 v2 → v1(5) → v3(2) → v4(4)

3 v3 → v2(2) → v4(3) → v5(7)

4 v4 → v2(4) → v3(3) → v5(8)

5 v5 → v3(7) → v4(8)

Adjacency list

An adjacency list for a graph with n vertices numbered 0, 1, …, n – 1
• Consists of n linked lists
• The ith linked list has a node for vertex j if and only if the graph contains an

edge from vertex i to vertex j
• This node can contain either

• Vertex j’s value, if any
• An indication of vertex j’s identity

34

Adjacency list

Figure 14.8

a) A directed graph and

b) its adjacency list

35

Adjacency list

• Adjacency list for an undirected graph
• Treats each edge as if it were two directed edges in opposite directions

Figure 14.9

a) A weighted undirected graph and b) its adjacency list

14 -36

Recap:
 Two implementations (representations)

An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation.

37

Comparison:
 Adjacency matrix Versus Adjacency list

• Two common operations on graphs
1. Determine whether there is an edge from vertex i to vertex j
2. Find all vertices adjacent to a given vertex i

• Adjacency matrix
• Supports operation 1 more efficiently

• Adjacency list
• Supports operation 2 more efficiently
• Often requires less space than an adjacency matrix

38

39

Pros and Cons of the two implementations

• Adjacency matrix
• Allows us to determine whether there is an edge from node i to node j in

O(1) time;

• Adjacency list
• Allows us to find all nodes adjacent to a given node j efficiently
• If the graph is sparse, adjacency list requires less space

Graph problems / Graph algorithms

40

41

Problems related to Graph

• Graph Traversal
• Topological Sort
• Minimum Spanning Tree
• Shortest Path
• All-pair shortest path
• Euler path
• Hamilton circuit
• Travelling Salesman Problem
• The four colour problem.
• Graph Cut problem
• Max flow and Min Cut
• …

Graph Traversal

42

43

Graph Traversal Algorithm

• To traverse a tree, we use tree traversal algorithms like pre-order,
in-order, and post-order to visit all the nodes in a tree

• Similarly, graph traversal algorithm tries to visit all the nodes it can
reach.

• If a graph is disconnected, a graph traversal that begins at a node v
will visit only a subset of nodes, that is, the connected component
containing v.

44

Two basic traversal algorithms

• Depth-first-search (DFS)
• After visit node v, DFS strategy proceeds along a path from v as deeply into the graph

as possible before backing up

• Breadth-first-search (BFS)
• After visit node v, BFS strategy visits every node adjacent to v before visiting any

other nodes

14 -45

Graph Traversals

Figure 14.10

Visitation order for a) a depth-first search; b) a breadth-first search

Depth-First Search

• Depth-first search (DFS) traversal
• Goes as deeply into the graph as possible from a vertex before

backtracking

• DFS strategy looks similar to pre-order. From a given node v, it first visits
itself. Then, recursively visit its unvisited neighbors one by one.

• A recursive implementation is simple
• An iterative implementation uses a stack

46

Recursive Depth-First Search

• Recursive DFS traversal can be defined as follows:

dfs(v)
 print(v);
 mark v as visited
 for (each unvisited vertex u adjacent to v)
 dfs(u)

47

Iterative Depth-First Search

• Iterative DFS traversal
dfs(v)
 s.createStack()
 s.push(v)
 mark v as visited
 while (!s.isEmpty()) {
 if (no unvisited vertices adjacent to the vertex on the stack

top)
 s.pop() // backtrack
 } else {
 select an unvisited vertex u adjacent to the vertex on

the
 stack top
 s.push(u)
 mark u as visited
 }
 } 48

Iterative Depth-First Search

i

a
b

f

e

g

c

d

h

Node visited Stack (bottom to top)

a a

b a b

c a b c

d a b c d

g a b c d g

e a b c d g e

Node visited Stack (bottom to top)

(cont’d)

(backtrack) a b c d g

f a b c d g f

(backtrack) a b c d g

(backtrack) a b c d

h a b c d h

(backtrack) a b c d

(backtrack) a b c

(backtrack) a b

(backtrack) a

i a i

(backtrack) a

(backtrack) empty

49

Breadth-First Search

• Breadth-first search (BFS) traversal
• Visits every vertex adjacent to a vertex v that it can before visiting any

other vertex
• A first visited, first explored strategy

• An iterative implementation uses a queue
• A recursive implementation is possible, but not simple

50

51

Breadth-first search (BFS)

• BFS strategy looks similar to level-order. From a given node v, it
first visits itself. Then, it visits every node adjacent to v before
visiting any other nodes.

• 1. Visit v
• 2. Visit all v’s neigbours
• 3. Visit all v’s neighbours’ neighbours
• …

• Similar to level-order, BFS is based on a queue.

Iterative Breadth-First Search

• Iterative BFS traversal
bfs(v)
 q.createQueue()
 q.enqueue(v)
 mark v as visited
 while (!q.isEmpty()) {
 w = q.dequeue()
 for (each unvisited vertex u adjacent to w) {
 mark u as visited
 q.enqueue(u)
 }
 }

52

Iterative Breadth-First Search

i

a
b

f

e

g

c

d

h

Node visited Queue (front to back)

a a

 (empty)

b b

f b f

i b f i

 f i

Node visited Queue (front to back)

(cont’d)

c f i c

e f i c e

 i c e

g i c e g

 c e g

 e g

d e g d

 g d

 d

 (empty)

h h

 (empty)

53

54

BFS example

• Start from v5

v5

1

v3

2

v4

3

v2

4

v1

5

v1

v4

v3

v5

v2

G

x

Visit Queue

(front to

back)

v5 v5

empty

v3 v3

v4 v3, v4

v4

v2 v4, v2

v2

empty

v1 v1

empty

x

x

x x

Topological order and topological sorting

55

56

Topological order
• Consider the prerequisite structure for courses:

• Each node x represents a course x

• (x, y) represents that course x is a prerequisite to course y

• Note that this graph should be a directed graph without cycles (called a directed acyclic graph).

• A linear order to take all 5 courses while satisfying all prerequisites is called a topological order.

• E.g.
• a, c, b, e, d
• c, a, b, e, d

b d

e
c

a

57

Topological sort

• Arranging all nodes in the graph in a topological order

Algorithm TopoSort
n = |V|;
for i = 1 to n {
 select a node v that has no successor;
 aList.add(1, v);
 delete node v and its edges from the graph;
}
return aList;

58

Example: topo-sort

b d

e
c

a

1. d has no successor!
Choose d!

a

5. Choose a!

The topological order is a,b,c,e,d

2. Both b and e have no
successor! Choose e!

b

e
c

a

3. Both b and c have
no successor!
Choose c!

b

c

a

4. Only b has no
successor!
Choose b!

b
a

Spanning tree and MST

59

60

Spanning Tree
• Given a connected undirected graph G, a spanning tree of G is a

subgraph of G that contains all of G’s nodes and enough of its edges to
form a tree.

v1

v4

v3

v5

v2

Spanning
tree Spanning tree is not unique!

61

DFS spanning tree
• Generate the spanning tree edge during the DFS traversal.

Algorithm dfsSpanningTree(v)
mark v as visited;
for (each unvisited node u adjacent to v) {
 mark the edge from u to v;
 dfsSpanningTree(u);
}

• Similar to DFS, the spanning tree edges can be generated based on BFS traversal.

62

Minimum (cost) Spanning Tree

• Consider a connected undirected graph where

• Each node x represents a city x

• Each edge (x, y) has a number which measures the cost of placing telephone
line between city x and city y

• Problem: connecting all cities while minimizing the total cost
• Solution: find a spanning tree with minimum total weight, that is,

minimum spanning tree

Minimum Spanning Tree

• A spanning tree of an undirected graph G is a subgraph of G that is
a tree containing all the vertices of G.

• In a weighted graph, the weight of a subgraph is the sum of the
weights of the edges in the subgraph.

• A minimum spanning tree (MST) for a weighted undirected graph is
a spanning tree with minimum weight.

63

Minimum Spanning Tree

An undirected graph and its minimum spanning tree.
64

65

Formal definition of minimum spanning tree

• Given a connected undirected graph G.
• Let T be a spanning tree of G.
• cost(T) = eTweight(e)
• The minimum spanning tree is a spanning tree T which minimizes

cost(T)

v1

v4

v3

v5

v2

5
2

3 7
8

4
Minimum
spanning

tree

Prim's Algorithm for MST

• Prim's algorithm for finding an MST is a greedy algorithm.

• Start by selecting an arbitrary vertex, include it into the current MST.

• Grow the current MST by inserting into it the vertex closest to one of the
vertices already in current MST.

66

67

Prim’s algorithm (II)

Algorithm PrimAlgorithm(v)
• Mark node v as visited and include it in the minimum spanning

tree;
• while (there are unvisited nodes) {

• find the minimum edge (v, u) between a visited node v and an unvisited
node u;

• mark u as visited;
• add both v and (v, u) to the minimum spanning tree;

 }

68

Prim’s algorithm (I)

Start from v5, find the

minimum edge attach to v5

v2v1

v4

v3

v5

5 2

3
7

8

4

Find the minimum edge

attach to v3 and v5

v2v1

v4

v3

v5

5 2

3
7

8

4

Find the minimum edge

attach to v2, v3 and v5

v2v1

v4

v3

v5

5 2

3
7

8

4

v2v1

v4

v3

v5

5 2

3
7

8

4

v2v1

v4

v3

v5

5 2

3
7

8

4

Find the minimum edge

attach to v2, v3 , v4 and v5

Shortest path problem

69

70

Shortest path

• Consider a weighted directed graph
• Each node x represents a city x
• Each edge (x, y) has a number which represent the cost of traveling from

city x to city y

• Problem: find the minimum cost to travel from city x to city y
• Solution: find the shortest path from x to y

Single-Source Shortest Paths

• For a weighted graph G = (V,E,w), the single-source shortest paths
problem is to find the shortest paths from a vertex v ∈ V to all other
vertices in V.

• Dijkstra's algorithm is similar to Prim's algorithm.
• maintains a set of nodes for which the shortest paths are known.
• grow this set based on the node closest to source using one of the nodes

in the current shortest path set.

71

72

Formal definition of shortest path

• Given a weighted directed graph G.
• Let P be a path of G from x to y.
• cost(P) = ePweight(e)
• The shortest path is a path P which minimizes cost(P)

v2
v1

v4

v3

v5

5
2

3 4
8

4 Shortest Path

73

Dijkstra’s algorithm

• Consider a graph G, each edge (u, v) has a weight w(u, v) > 0.
• Suppose we want to find the shortest path starting from v1 to any

node vi

• Let VS be a subset of nodes in G
• Let cost[vi] be the weight of the shortest path from v1 to vi that

passes through nodes in VS only.

74

Dijkstra’s algorithm: code
Algorithm shortestPath()

n = number of nodes in the graph;

for i = 1 to n

 cost[vi] = w(v1, vi);

VS = { v1 };

for step = 2 to n {

 find the smallest cost[vi] s.t. vi is not in VS;

 include vi to VS;

 for (all nodes vj not in VS) {

 if (cost[vj] > cost[vi] + w(vi, vj))

 cost[vj] = cost[vi] + w(vi, vj);

 }

}

75

Example for Dijkstra’s algorithm

v2v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

76

Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

77

Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

3 v4 [v1, v2, v4] 0 5 12 9 17

78

Example for Dijkstra’s algorithm

v2
v1

v4

v3

v5

5
2

3 4
8

4

v VS cost[v1] cost[v2] cost[v3] cost[v4] cost[v5]

1 [v1] 0 5 ∞ ∞ ∞

2 v2 [v1, v2] 0 5 ∞ 9 ∞

3 v4 [v1, v2, v4] 0 5 12 9 17

4 v3 [v1, v2, v4, v3] 0 5 12 9 16

5 v5 [v1, v2, v4, v3, v5] 0 5 12 9 16

Complexity of Dijkstra’s algorithm

79

All-Pairs Shortest Paths

• Given a weighted graph G(V,E,w), the all-pairs shortest paths problem
is to find the shortest paths between all pairs of vertices vi, vj ∈ V.

• A number of algorithms are known for solving this problem.
• Matrix multiplication
• Dijkstra algorithm
• …

80

All-Pairs Shortest Paths:

 Matrix-Multiplication Based Algorithm

• Consider the multiplication of the weighted adjacency matrix with
itself - except,

• replace the multiplication operation in matrix multiplication by addition,
and the summation operation by minimization.

• Notice that the product of weighted adjacency matrix with itself
returns a matrix that contains shortest paths of length 2 between
any pair of nodes.

• It follows from this argument that An contains all shortest paths.

81

Analogy of matrix multiplication

82

Matrix-Multiplication Based Algorithm

83

Time complexity analysis:
 Matrix-Multiplication Based Algorithm

• An is computed by doubling powers - i.e., as A, A2, A4, A8, and so
on.

• We need log n matrix multiplications, each taking time O(n3).
• The serial complexity of this procedure is O(n3log n).
• This algorithm is not optimal, since the best known algorithms

have complexity O(n3).

84

APSP using Dijkstra’s SSSP algorithm

• Execute n instances of the single-source shortest path problem,
one for each of the n source vertices.

• Complexity is O(n3).

85

Circuit Problems

86

14 -87

Circuits
• A circuit

• A special cycle that passes through every vertex (or edge) in a graph exactly once

• Euler Circuit is a circuit that begins at a vertex v, passes through every edge exactly once, and
terminates at v.

• Euler Circuit exists if and only if each vertex touches an even number of edges (i.e.,
has an even degree)

a) Euler’s bridge problem

and b) its multigraph

representation

Euler and Hamilton

• An Euler path is a path that passes through every edge exactly once.
If it ends at the initial vertex then it is an Euler circuit.

• A Hamiltonian path is a path that passes through every vertex exactly
once (NOT every edge). If it ends at the initial vertex then it is
a Hamiltonian circuit.

• Note:
• In an Euler path you might pass through a vertex more than once.
• In a Hamiltonian path you may not pass through all edges.

88

89

Hamilton circuit

• A Hamilton circuit is a cycle that begins at a vertex v, passes through
every vertex in the graph exactly once, and terminates at v.

• Hamiltonian circuit = visit each vertex once and only once and come
back to where you started from

• Note: In a Hamiltonian path (or circuit) you may not pass through all
edges.

• Given a graph, does it have a Hamiltonian circuit ?

90

14 -91

Hamilton Circuit: example

b

a

cd

e

f

g

h

i

jkl

m

n

o
p

q

r
s

t

14 -92

b

a

cd

e

f

g

h

i

jkl

m

n

o
p

q

r
s

t

Hamilton Circuit: example

TSP problem

93

94

TSP (The travelling salesman problem)

• Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly
once and returns to the origin city ?

• This is an optimization problem

95

The Traveling Salesman Problem (TSP) and the Hamiltonian Circuit
Problem are closely related but not identical.

• Traveling Salesman Problem (TSP): Given a set of cities and the
distances between each pair of cities, the TSP asks for the shortest
possible route that visits each city exactly once and returns to the
origin city. It focuses on minimizing the total travel cost (distance,
time, etc.).

• Hamiltonian Circuit Problem: This problem involves finding a
Hamiltonian circuit in a graph, which is a cycle that visits each
vertex exactly once and returns to the starting vertex. It does not
consider the weights or costs associated with the edges; it merely
asks if such a circuit exists.

96

How do we really solve TSP?

• Stochastic Gradient descent
• Simulated annealing
• Genetic algorithms
• Ant colony algorithms
• Randomized algorithms
• Hopfield neural network algorithm (Nobel Prize for Physics 2024).

97

98

Hopfield net and Traveling Salesman problem

99

Traveling Salesman Problem

• Goal
• Come back to the city A, visiting j = 2 to n (n is number of cities) exactly

once and minimize the total distance.

• To solve by a Hopfield-Net we need to decide the architecture:
• How many neurons?
• What are the weights?

100

101

Hopfield-Net energy function (loss function) for TSP

102

An example solution

103

Comics

104

• Color a map such that two
regions with a common border
are assigned different colors.

• Each map can be represented
by a graph:

• Each region of the map is
represented by a vertex;

• Edges connect two vertices if the
regions represented by these
vertices have a common border.

105

Graph Coloring problem

• Definition: A graph has been colored if a color has been
assigned to each vertex in such a way that adjacent
vertices have different colors.

• Definition: The chromatic number of a graph is the
smallest number of colors with which it can be colored.

 In the example above, the chromatic number is 4.
 106

The Graph Coloring Problem

• Definition: A graph is planar if it can be drawn in a plane
without edge-crossings.

• The four color theorem: For every planar graph, the
chromatic number is ≤ 4.

 Was posed as a conjecture in the 1850s. Finally proved in 1976 (Appel
and Haken) by the aid of computers.

107

Graph Coloring problem

108

Summary

• Graphs can be used to represent many real-life problems.
• Implementation of Graph ADT
• There are numerous important graph algorithms.
• We have studied some basic concepts and algorithms.

• Graph Traversal
• Topological Sort
• Spanning Tree
• Minimum Spanning Tree
• Shortest Path
• Circuit problems
• Graph coloring.
• …

Week-12: class review.

109

	Slide 1: COMP1110/1140/6710 Week 11(B)
	Slide 2: Tree versus Graph
	Slide 3: What is a graph?
	Slide 4: Examples of graphs
	Slide 5: A bit of history of graph theory
	Slide 6: A bit of history of graph theory
	Slide 7: Nobel Prize for Chemistry 2024
	Slide 8: Hamilton cycle
	Slide 9: Formal Definition of graph
	Slide 10: Terminology
	Slide 11: Terminology
	Slide 12: Adjacent
	Slide 13: Path and simple path
	Slide 14: Cycle and simple cycle
	Slide 15: Connected graph
	Slide 16: Example of disconnected graph
	Slide 17: Connected component
	Slide 18: Complete graph
	Slide 19: Subgraph
	Slide 20: Weighted graph
	Slide 21: Directed graph (digraph)
	Slide 22: More on directed graph
	Slide 23: Property of graph
	Slide 24: Graphs As ADTs
	Slide 25: Graphs As ADTs
	Slide 26: Implementing Graphs
	Slide 27: Implementing Graph
	Slide 28: Adjacent Matrix
	Slide 29: Adjacency matrix
	Slide 30: Adjacency matrix for directed graph
	Slide 31: Adjacency matrix for weighted undirected graph
	Slide 32: Adjacency linked list for directed graph
	Slide 33: Adjacency list for weighted undirected graph
	Slide 34: Adjacency list
	Slide 35: Adjacency list
	Slide 36: Adjacency list
	Slide 37: Recap: Two implementations (representations)
	Slide 38: Comparison: Adjacency matrix Versus Adjacency list
	Slide 39: Pros and Cons of the two implementations
	Slide 40: Graph problems / Graph algorithms
	Slide 41: Problems related to Graph
	Slide 42: Graph Traversal
	Slide 43: Graph Traversal Algorithm
	Slide 44: Two basic traversal algorithms
	Slide 45: Graph Traversals
	Slide 46: Depth-First Search
	Slide 47: Recursive Depth-First Search
	Slide 48: Iterative Depth-First Search
	Slide 49: Iterative Depth-First Search
	Slide 50: Breadth-First Search
	Slide 51: Breadth-first search (BFS)
	Slide 52: Iterative Breadth-First Search
	Slide 53: Iterative Breadth-First Search
	Slide 54: BFS example
	Slide 55: Topological order and topological sorting
	Slide 56: Topological order
	Slide 57: Topological sort
	Slide 58: Example: topo-sort
	Slide 59: Spanning tree and MST
	Slide 60: Spanning Tree
	Slide 61: DFS spanning tree
	Slide 62: Minimum (cost) Spanning Tree
	Slide 63: Minimum Spanning Tree
	Slide 64: Minimum Spanning Tree
	Slide 65: Formal definition of minimum spanning tree
	Slide 66: Prim's Algorithm for MST
	Slide 67: Prim’s algorithm (II)
	Slide 68: Prim’s algorithm (I)
	Slide 69: Shortest path problem
	Slide 70: Shortest path
	Slide 71: Single-Source Shortest Paths
	Slide 72: Formal definition of shortest path
	Slide 73: Dijkstra’s algorithm
	Slide 74: Dijkstra’s algorithm: code
	Slide 75: Example for Dijkstra’s algorithm
	Slide 76: Example for Dijkstra’s algorithm
	Slide 77: Example for Dijkstra’s algorithm
	Slide 78: Example for Dijkstra’s algorithm
	Slide 79: Complexity of Dijkstra’s algorithm
	Slide 80: All-Pairs Shortest Paths
	Slide 81: All-Pairs Shortest Paths: Matrix-Multiplication Based Algorithm
	Slide 82: Analogy of matrix multiplication
	Slide 83: Matrix-Multiplication Based Algorithm
	Slide 84: Time complexity analysis: Matrix-Multiplication Based Algorithm
	Slide 85: APSP using Dijkstra’s SSSP algorithm
	Slide 86: Circuit Problems
	Slide 87: Circuits
	Slide 88: Euler and Hamilton
	Slide 89
	Slide 90: Hamilton circuit
	Slide 91: Hamilton Circuit: example
	Slide 92: Hamilton Circuit: example
	Slide 93: TSP problem
	Slide 94
	Slide 95: TSP (The travelling salesman problem)
	Slide 96
	Slide 97: How do we really solve TSP?
	Slide 98
	Slide 99: Hopfield net and Traveling Salesman problem
	Slide 100: Traveling Salesman Problem
	Slide 101
	Slide 102: Hopfield-Net energy function (loss function) for TSP
	Slide 103: An example solution
	Slide 104: Comics
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Summary
	Slide 109: Week-12: class review.

