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1. Design
a) Data, state
b) Behaviour/

Functionality

2. Tests
3. Implementation
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Steps to working software

Iterate!

Think before you code, and write down what you were thinking.
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● What distinct things do we care about?
● What aspects of them do we care about?

● How can we interact with those things?
● What can they do?

● Are there any subtype relationships?
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Data + Functionality
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Context matters

University ID

Demerit points

Address

Tax File NumberInterests

Privacy settings

Genes

Credit score
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The puzzle consists of an n × n 
grid (n = k2) of squares. The 
goal is to fill each square with 
one of n symbols, such that the 
symbols in each row, column 
and (non-overlapping) k × k box 
are all different.
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Example
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Simplicity

● Avoid unnecessary 
complexity.

● What is “complex” 
depends on perspective.
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(Figure 3.1, Ousterhout, 2018)

● Isolate/encapsulate complexity.

● Classes: Interface vs. implementation.
● Make code readable and maintainable for other 

programmers (including your future self).
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Some Principles (Ousterhout)
● Deep “modules” (method, class, package, or module)

− Simple “interfaces”* (narrow)

− Encapsulate lots of complexity (depth)

− General-purpose

● Prefer simple interface over simple implementation

● Design errors out of existence

● Design for ease of reading, not ease of writing

● Extra: Don’t Repeat Yourself (DRY)

* Interfaces in the broad sense, not just the Java keyword
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● The name of a class/method/variable is the (shortest) description of 
what it does, but that is often not enough.

● Abstract: describe what, not how.

● The larger the unit, the more abstract the description.
● Make assumptions and limitations explicit!

● Is the value of a field tied to some other value?

● Is a number assumed to be non-zero/within a certain range?

● Is a reference assumed to always be non-null?

● Can a String be empty?
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Documentation
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