
Structured Programming 1110/6710

Software designSoftware design S5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

1. Design
a) Data, state
b) Behaviour/

Functionality

2. Tests
3. Implementation

STRUCTURED PROGRAMMING 1110/6710 | S05 - SOFTWARE DESIGN2

Steps to working software

Iterate!

Think before you code, and write down what you were thinking.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

● What distinct things do we care about?
● What aspects of them do we care about?

● How can we interact with those things?
● What can they do?

● Are there any subtype relationships?

STRUCTURED PROGRAMMING 1110/6710 | S05 - SOFTWARE DESIGN3

Data + Functionality

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C
STRUCTURED PROGRAMMING 1110/6710 | S05 - SOFTWARE DESIGN4

Context matters

University ID

Demerit points

Address

Tax File NumberInterests

Privacy settings

Genes

Credit score

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The puzzle consists of an n × n
grid (n = k2) of squares. The
goal is to fill each square with
one of n symbols, such that the
symbols in each row, column
and (non-overlapping) k × k box
are all different.

STRUCTURED PROGRAMMING 1110/6710 | S05 - SOFTWARE DESIGN5

Example

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Simplicity

● Avoid unnecessary
complexity.

● What is “complex”
depends on perspective.

STRUCTURED PROGRAMMING 1110/6710 | S05 - SOFTWARE DESIGN6

(Figure 3.1, Ousterhout, 2018)

● Isolate/encapsulate complexity.

● Classes: Interface vs. implementation.
● Make code readable and maintainable for other

programmers (including your future self).

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Some Principles (Ousterhout)
● Deep “modules” (method, class, package, or module)

− Simple “interfaces”* (narrow)

− Encapsulate lots of complexity (depth)

− General-purpose

● Prefer simple interface over simple implementation

● Design errors out of existence

● Design for ease of reading, not ease of writing

● Extra: Don’t Repeat Yourself (DRY)

* Interfaces in the broad sense, not just the Java keyword

STRUCTURED PROGRAMMING 1110/6710 | S05 - SOFTWARE DESIGN

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

● The name of a class/method/variable is the (shortest) description of
what it does, but that is often not enough.

● Abstract: describe what, not how.

● The larger the unit, the more abstract the description.
● Make assumptions and limitations explicit!

● Is the value of a field tied to some other value?

● Is a number assumed to be non-zero/within a certain range?

● Is a reference assumed to always be non-null?

● Can a String be empty?

STRUCTURED PROGRAMMING 1110/6710 | S05 - SOFTWARE DESIGN8

Documentation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Key Goal
	Slide 7
	Slide 8

