

COMP1730/COMP6730 Programming for Scientists

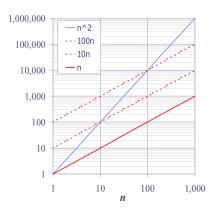
Algorithm and problem complexity

Algorithm complexity

- * The time (memory) consumed by an algorithm:
 - Counting "elementary operations" (not μ s).
 - Expressed as a function of the size of its arguments.
 - In the worst case.
- Complexity describes scaling behaviour: How much does runtime grow if the size of the arguments grow by a certain factor?
 - Understanding algorithm complexity is important when (but usually only when) dealing with large problems.

Big-O notation

- O(f(n)) means roughly "a function that grows at the rate of f(n), for large enough n".
- * For example,
 - $n^2 + 2n$ is $O(n^2)$
 - 100n is O(n)
 - 10^{12} is O(1).



(Image by Lexing Xie)

Example

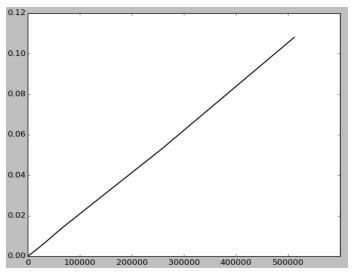
- ★ Find the greatest element ≤ x in an unsorted sequence of n elements. (For simplicity, assume some element < x is in the sequence.)</p>
- * Two approaches:
 - a) Search through the sequence; or
 - **b)** First sort the sequence, then find the greatest element $\leq x$ in a *sorted* sequence.

Searching an unsorted sequence

```
def unsorted_find(x, ulist):
best = min(ulist)
for elem in ulist:
    if elem == x:
        return elem
    elif elem <= x:
        if elem > best:
             best = elem
return best
```

Analysis

- * Elementary operation: comparison.
 - Can be arbitrarily complex.
- * If we're lucky, ulist[0] == x.
- * Worst case?
 - ulist = [0, 1, 2, ..., x 1]
 - Compare each element with x and current value of best
- * What about min (ulist)?
- * f(n) = 2n, so O(n)



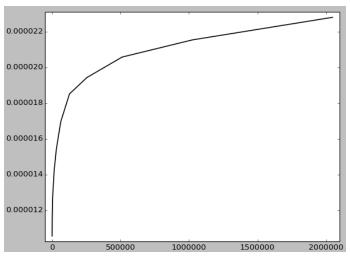
Measured runtime

Searching a sorted sequence

```
def sorted_find(x, slist):
if slist[-1] \ll x:
    return slist[-1]
lower = 0
upper = len(slist) - 1
while (upper - lower) > 1:
    middle = (lower + upper) // 2
    if slist[middle] <= x:
        lower = middle
    else:
        upper = middle
return slist[lower]
```

Analysis

- * Loop invariant: slist[lower] <= x and x < slist[upper].
- * How many iterations of the loop?
 - **-** Initially, upper lower = n-1.
 - The difference is halved in every iteration.
 - Can halve it at most log₂(n) times before it becomes 1.
- * $f(n) = \log_2(n) + 1$, so $O(\log(n))$.



Measured runtime

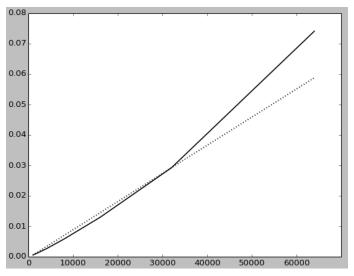
Problem complexity

- * The complexity of a problem is the time (memory) that *any* algorithm *must* use, in the worst case, to solve the problem, as a function of the size of the arguments.
- * The hierarchy theorem: For any computable function f(n) there is a problem that requires time greater than f(n). (Analogous result for memory.)

How fast can you sort?

* Any sorting algorithm that uses only pair-wise comparisons needs $n \log(n)$ comparisons in the worst case.

★ $\log_2(n!) \ge n \log(n)$ for large enough n.



Measured runtime (list.sort)

Points of comparison

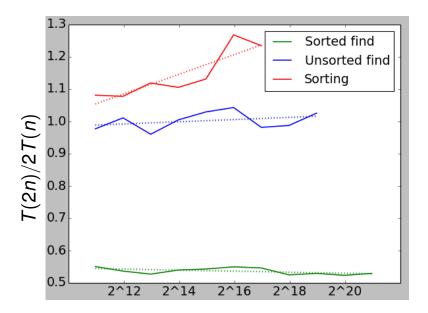
* Algorithm (a): O(n)

* Algorithm (b): $n \log(n) + \log(n) = O(n \log(n))$

	<i>n</i> = 64k		<i>n</i> = 128k		<i>n</i> = 512 <i>k</i>	
Unsorted find	0.013	S	0.026	S	0.108	S
Sorted find	0.0000	17s	0.0000	18s	0.00002	S
Sorting	0.07	S	0.18	S		

Rate of growth

- * Algorithm uses T(n) time on input of size n.
- If we double the size of the input, by what factor does the runtime increase?



Caution

 "Premature optimisation is the root of all evil in programming."

- C.A.R. Hoare

 Remember: Scaling behaviour becomes important when (and only when) problems become large, or when they need to be solved a many times.

NP-Completeness

Example

* The subset sum problem: Given n integers w_1, \ldots, w_n , is there a subset of them that sums to exactly C?

(Also known as the "(exact) knapsack problem":

$$w_0 = 5$$
 $w_1 = 2$ $w_2 = 9$ $w_3 = 1$ $C = 16.$

```
def subset_sum(w, C):
if len(w) == 0:
    return C == 0
# including w[0]
if w[0] <= C:
    if subset_sum(w[1:], C - w[0]):
        return True
# excluding w[0]
if subset_sum(w[1:], C):
    return True
return False
```

Analysis

- * Count recursive function calls (no loops, so every call does a constant max amount of work).
- * Assume argument size (n) is number of weights.
- * Worst case?
 - If the answer is False and C is less than but close to $\sum_i w_i$, almost every call makes two recursive calls.
- * f(n+1) = 2f(n), f(0) = 1 means that $f(n) = 2^n$.

Finding vs. checking an answer

```
* Sorting a list vs. O(n \log(n)) checking if it's already sorted O(n)
```

* Finding a subset of w_1, \ldots, w_n $O(2^n)$ that sums to C vs. checking if a sum is equal to C O(n)

NP-complete problems

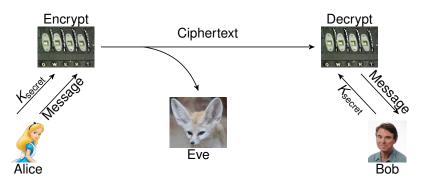
- * A problem is **in NP** iff there is an answerchecking algorithm that runs in polynomial time $(O(n^c), c \text{ constant}).$
- * NP stands for **N**on-deterministic **P**olynomial time.
- * A problem is **NP-complete** if it's in NP and at least as hard as every other problem in NP.
- * We think there is no polynomial time algorithm for solving NP-complete problems, but we don't know.

There are many NP-complete problems...

- Most populous intractable problem class.
 - Solving a system of *integer* linear equations.
 - The Knapsack problem.
- * http://www.nada.kth.se/~viggo/ www.compendium/www.compendium.html lists over 700 NP-complete optimisation problems.
- * The question of whether there is a polynomial time algorithm for solving NP-complete problems is one of the most significant unresolved questions in computer science. There is a \$US1,000,000 prize for an answer.

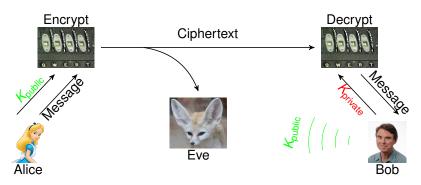
Why Complexity is (Sometimes) a Good Thing

Cryptographic Characters



- * Eve can intercept the ciphertext, but without knowing K_{secret} can't read the message.
- * Alice and Bob must agree on K_{secret}.

Public Key Cryptography



- * K_{public} can only be used to encrypt.
- * Decrypting with $K_{private}$ is easy, but decrypting without knowing $K_{private}$ is (NP-)hard.

Example: Proof of Identity

- * Alice is chatting with "Bob" on-line, but wants to be sure it's really Bob.
 - **1.** Alice picks a random number N and sends $C = \text{Encrypt}(K_{\text{public}}, N)$ to "Bob".
 - **2.** Bob *quickly* computes $N = \text{Decrypt}(K_{\text{private}}, C)$ and sends N back to Alice.
 - Repeat 1–2 many times to make sure "Bob" didn't make a lucky guess.
 - Succeeding every time proves he knows $K_{private}$, which we assume only Bob does.