
COMP1730/COMP6730
Programming for Scientists

Testing and Debugging.



Overview

* Testing
* Debugging
* Defensive Programming



Overview of testing

* There are many different types of testing - load
testing, integration testing, user experience
testing, etc.

* We are concerned with unit-testing or functional
testing.

* Usually done at the function (or method level).
* Done by calling a function with specified

parameters and checking that the return value is
as expected.



Unit-testing in Python
* There are many ways to do unit-testing in

Python. The simplest is Python’s unittest
module.

import unittest

class Test(unittest.TestCase):
def test function a(self):

self.assertEquals(function a(
x, y, z), expected value)



Test methods

* assertEquals(a, b): Test whether
expression a and b are equal.

* assertTrue(a): Test whether expression a is
True.

* assertIsNone(a): Test whether expression a
evaluates to None.

* assertIn(x, xs): Test whether x is an
element in collection xs.



Tips for unit-testing
* Have your tests in a separate file.
* A small function is easier to test than a large

function.
* A function that only does one thing is easier to

test than a function that does many things.
* Unit-testing is only concerned with the outputs

of a function (and occasionally side-effects).
Don’t try and test how a function does its thing.

* Especially true when testing class methods (not
really covered in this course).



The Debugging Process

1. Detection - realising you have a bug.
2. Isolation - narrowing down the cause.
3. Comprehension - Working out what went wrong.
4. Correction - Fixing the problem.
5. Prevention - Making sure the bug can’t happen

again.
6. Go back to step 1.



Syntax Errors

* The code is not valid python code.
* These are usually the easiest type to find

because you can’t run the code until you resolve
them.

* Python usually tells you where they are
(approximately).



Runtime Errors

* The code is valid Python code - but it’s being
used to do something Python doesn’t know how
to do.

* Causes an exception when run (possibly only
under certain conditions).

* Learn to read (and understand) Python’s error
messages. ZeroDivisionError is largely
self-explanatory, but understand what causes
Python to raise an AttributeError.



Semantic Errors (Logic Errors)

* The code is valid Python code and runs without
error, it just does the wrong thing (possibly only
sometimes).

* To detect these type of bugs, you must have a
good idea of what the code is supposed to do.

* These are usually the hardest type of bug to
detect and fix, particularly if they only occur
under certain conditions.



Working out what went wrong
* Work back from where a bug appears (e.g. the

line number for an error message).
* Run the code with simpler inputs that still exhibit

the bug, e.g. only use the first few records in a
data set.

* Add print statements to view the state of
variables.

* Use unit-tests to rule out functions that are
working correctly. Be careful though, since if the
bug only occurs under certain conditions, these
conditions need to be tested in the unit-test
suite.



Some Common Bugs

* Logical operations are not English.
* Loop condition is not modified.
* Off-by-one errors.
* Floating point precision.
* is vs ==.



Defensive Programming

Everyone knows that debugging is twice as hard
as writing a program in the first place. So if you’re
as clever as you can be when you write it, how will
you ever debug it?

Brian Kernighan



Code Quality Matters!
* A function that is hard to read is hard to debug.

def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC-1:-ABC-1:-1]
if ABC == 0:

return 0
abC = AbC(ABc[-ABC:ABC-1:])
if ABc[-ABC] < 0:

abC += ABc[len(ABc)-ABC]
return abC



Pre and Post Conditions
* Functions allow for breaking larger programs

into small pieces which can be separately tested
and debugged.

* assert statements allow us to ensure that only
appropriate parameters are passed as
arguments to functions.
Example: assert type(param a) == int
and param a > 0

* Unit tests allow us to verify that the function is
returning the appropriate value for the given
inputs.



Explicit vs Implicit

* Make things explicit if they are unclear or could
be confusing. Even if they are working as
intended.

* return None is better than no return
statement.

* - (2 ** 2) instead of - 2 ** 2.
* (a and b) or c instead of a and b or
c.

* dict() instead of { }.



Avoid Language Tricks
* Don’t make use of language quirks in your code.
* Example: operator chaining.

>>> 1 == 2
False
>>> False is not True
True
>>> 1 == 2 is not True
???


