

COMP1730/COMP6730 Programming for Scientists

Floating point numbers

Announcements

- Misconduct in relation to assignments.
 - Homework assignments may be done in pairs, but not in a group of more than two.
 - You must declare collaboration in your submission.
 - You may not post solutions, or parts of solutions, to assignment problems anywhere.

Outline

- * Numbers in binary and other bases
- * Floating point numbers
- * Error analysis

Representing Integers

Sequential encoding

- * A sequential encoding system represents each item (words, numbers, etc) by a sequence of symbols; the order (position) of a symbol in the sequence carries meaning, as much as the symbol itself.
- For example,
 - "representation " ≠ "interpret as one"
 - **-** 007 ≠ 700

Positional number system

- * The position of a digit is the power of the *base* that it adds to the number.
- * For example, in base 10:

```
1864
```

- = 1 thousand 8 hundreds 6 tens 4 ones
- $= 1 \times 10^3 + 8 \times 10^2 + 6 \times 10^1 + 4 \times 10^0$
- * The position of the least significant digit is 0. $(b^0 = 1 \text{ for any base } b.)$
- * The representation of any (non-negative integer) number is unique, except for leading zeros.

We can count in any base

* For example, in base 3:

$$2120001_{3}$$
= 2×3^{6}
 $+ 1 \times 3^{5} + 2 \times 3^{4} + 0 \times 3^{3}$
 $+ 0 \times 3^{2} + 0 \times 3^{1} + 1 \times 3^{0}$
= $2 \times 729 + 243 + 2 \times 81 + 1$
= 1864

- * Each digit is one of $0, \ldots, b-1$.
- * (" nnn_b " means a number in base b.)

 Ancient Babylonians (ca 2,000 BC) counted in base 60.

$$= 31 \times 60^1 + 4 \times 60^0$$

= 1864

```
₩7 51
              4(77 22
                               45.77 42
                                        15 77 52
      4777 13
              4(777 23
                      ((())) 33
                               45 777 43
                                        15 77 53
              ₹107 24
                      4407 34
                               15 03 44
                                        10 07 54
      ₹27 14
              ₹₹ 25
                      ₩₩ 35
                               45 W 45
                                        ₹₩ 15
6
      16
              ∜₩ 26
                      ₩₩ 36
                               ₹ 33 46
                                        ₹₩ 56
                               47 47
      ₹₹ 17
              ₹₹₹ 27
                      ### 37
                                        松罗 57
                      ₩₩ 38
                               45 48
                                        *** 58
      € 18
              ₹₹ 28
      4₩ 19
              44 2 29
                      ## 39
                               17 ## 49
                                        ₹₩₩ 59
```

* However, they did not have a symbol for 0: **?** can mean 1, 60, 3600, ¹/₆₀, etc.

Binary numbers

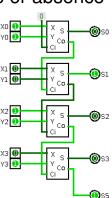
★ Binary numbers are simply numbers in base 2.

$$111010010002$$
= 1×2^{10}
 $+ 1 \times 2^{9} + 1 \times 2^{8} + 0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5}$
 $+ 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$
= $1024 + 512 + 256 + 64 + 8$
= 1864

Bits and bytes

* In the electronic computer, a single binary digit (bit) is represented by the presence or absence of current in a circuit element.

- * 8 bits make an octet, or byte.
- Digital hardware works with fixed-width number representations ("words").
- Common word sizes: 32-bit, 64-bit.



Arithmetic

 Long (multi-digit) addition, subtraction, multiplication, division and comparison (of non-negative numbers) work the same way in any base.

	1 1 1	
$0_2 + 0_2 = 0_2$	01012	
$ \begin{vmatrix} 0_2 + 1_2 & 1_2 \\ 1_2 + 0_2 & 1_2 \end{vmatrix} $	$+0111_{2}$	×
$ 1_2 + 0_2 = 1_2 $	11002	
$ 1_2 + 1_2 = 10_2 $		0
		10

	10012
X	1012
	10012
	00000_2
	1001002

1011012

Floating point numbers

Representing fractional numbers

 Extend the number system to negative positions; decimal point marks position zero.

$$\begin{array}{c} 0.25_{10} \\ = 0 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-2} \\ = 0 \times 1 + 2 \times \frac{1}{10} + 5 \times \frac{1}{100} \\ 0.01_{2} \\ = 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} \\ = 0 \times 1 + 0 \times \frac{1}{2} + 1 \times \frac{1}{4} \\ = 0.25_{10} \end{array}$$

- Not every fraction has a finite decimal expansion in a given base.
- * For example,
 - $\frac{1}{3} = 0.3333...$ in base 10
 - $\frac{1}{5} = 0.001100110011...$ in base 2
 - $\frac{1}{3} = 0.1$ in base 3.
- Because digital computers work with numbers of fixed width, representation of fractions have finite precision.

Floating point representation

⋆ A floating point number in base b,

$$x = \pm m \times b^e$$

consists of three components:

- the sign (+ or -);
- the significand (m);
- the exponent (e);
- * The number is *normalised* iff $1 \le m < b$.

 Compact (small) representation of numbers far from the decimal point.

- Floating point types, as implemented in computers, use fixed-width binary integer representation of the significand and exponent.
- * In a normalised binary number the first digit is 1, so only the fraction is represented (m = 1.f).
- ★ The exponent is biased by a negative constant.
- * IEEE standard formats:
 - single: 23-bit fraction, 8-bit exponent.
 - double: 52-bit fraction, 11-bit exponent.
- * Standard also specifies how to represent 0, $+\infty$, $-\infty$ and nan ("not a number").

$$x = (-1)^{s} (1.f)_{2} 2^{(e-127)}$$

$$= (-1)^{0} (1.01)_{2} 2^{01111100_{2}-127}$$

$$= (1 + 1 \cdot 2^{-2}) 2^{(64+32+16+8+4)-127}$$

$$= (1.25)2^{-3} = (1.25)/8 = 0.15625$$

(Image from wikipedia.org)

* Type float can represent infinity:

```
>>> 1 / 1e-320 inf
```

- Most math functions raise an error rather than return inf.
 - For example, 1 / 0, or math.log(0).
- nan ("not a number") is a special value used to indicate errors or undefined results.

```
>>> (1 / 1e-320) - (1 / 1e-320) nan
```

* math.isinf and math.isnan functions.

Floating point number systems

- * A floating point number system (b, p, L, U) is defined by four parameters:
 - the base (b);
 - the precision: number of digits in the fraction of the significand (p); and
 - the lower (L) and upper (U) limit of the exponent.
- * IEEE double-precision is (2, 52, -1023, 1024) (with some tweaks).

- The numbers that can be represented (exactly) in a floating point number system are not evenly distributed on the real line.
- * E.g., (2, 2, -2, 1): $\frac{1}{0}$
- * E.g., in a (2,52, -1023, 1024) system,
 - the smallest number > 0 is $2^{-1023} \approx 10^{-308}$,
 - (Actual IEEE double standard can represent numbers down to $\approx 4 \cdot 10^{-324}$.)
 - the smallest number > 1 is $1 + 2^{-52}$ $\approx 1 + 2 \cdot 10^{-16}$.
- * Rounding the significand to p + 1 digits causes a discrepancy, called the rounding error.

 Because of rounding, mathematical laws do not always hold for floating point arithmetic.

```
>>> a = 11111113.0

>>> b = -11111111.0

>>> c = 7.51111111

>>> (a + b) + c == a + (b + c)

False

>>> ((a + b) + c) - (a + (b + c))

4.488374116817795e-10
```

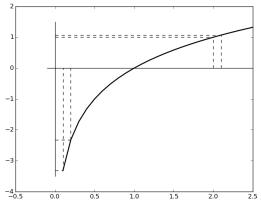
Example from Punch & Enbody

* (Almost) never compare floats with ==.

Error analysis

- * Let x be the true value and \hat{x} the approximate (measured or representable) number.
 - The absolute error is $\Delta x = |x \hat{x}|$.
 - The *relative error* is $\frac{\Delta x}{x} = \frac{|x \hat{x}|}{|x|}$.
- * Rounding to p + 1 digits in base b,
 - the absolute error is $\leq 1/2b^{-p} \cdot b^e$, and
 - the relative error is $\leq 1/2b^{-p}$.

Error propagation



* The absolute error $|f(x) - f(\hat{x})|$ is approximately proportional to $\frac{df}{dx}(x)|x - \hat{x}|$.

- * IEEE standard specifies that floating point arithmetic operations (and some other math functions, e.g., $\sqrt{\ }$) are exact, except for the rounding error in the result.
 - This does not mean errors do not propagate.
- * If $y = x_1 + x_2$, then $\Delta y = \Delta x_1 + \Delta x_2$
 - Also if either x_1 or x_2 is negative.
- * If $y = x_i \times x_2$, then $\Delta y = x_2 \times \Delta x_1 + x_1 \times \Delta x_2 + \Delta x_1 \times \Delta x_2$.

- * Example, continued:
 - $a = 1.11111113 \cdot 10^7$, $b = -1.11111111 \cdot 10^7$ and c = 7.511111111.
 - $y = b + c = -1.11111118511111111 \cdot 10^7.$
 - $\Delta y \leq 2^{-53} \cdot 10^7 \approx 1.1 \cdot 10^{-9}$ (assuming double precision and no error other than rounding).
 - $a + (b + c) = a + y \pm \Delta y$ (plus rounding error).
- * When adding floating point numbers, the absolute rounding error is proportional to the magnitude of the largest number that is rounded.