
COMP1730/COMP6730
Programming for Scientists

Code Quality



Lecture outline

* Why should we care about code quality?
* Aspects of code quality.
* Standards and guidelines.



Why should we care about code
quality?

* Code quality is primarily for people.
* Example 1: the interpreter doesn’t care what

you call your variables, as long as they are valid
names, but giving them useful names makes
your code much easier to read and understand.

* Example 2: python ignores comments, but they
can also make code much easier for a human to
understand.



(Extreme) example
* What does the following code do?

def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC-1:-ABC-1:-1]
if ABC == 0:

return 0
abC = AbC(ABc[-ABC:ABC-1:])
if ABc[-ABC] < 0:

abC += ABc[len(ABc)-ABC]
return abC



(Extreme) example - continued
* What does the following code do?

def sum if negative(input list):
’’’Sums up all the negative
elements in input list.’’’

total = 0
for number in input list:

if number < 0:
total = total + number

return total



What are the aspects of code
quality?



Aspects of code quality

* Commenting and documentation.
* Variable and function naming.
* Code organisation.
* Code efficiency (somewhat).



What makes a good comment?

* How or why not what.
* Parameters and assumptions - python is not a

typed language.
* Kept up-to-date and next to the relevant piece of

code.
* More important when learning to program or

working with other people.



Docstrings

* A way to formally document functions, classes
and modules.

* A triple quoted string as the first item inside a
function definition, module, or class definition.

* Used to document the purpose, as well as any
assumptions that are required for the code to
work correctly.

* Can be read using the help function in python.



Function docstrings
* Are a way of stating type requirements and

purpose of function parameters and return
values in python.

def get rows(sudoku state):
’’’Gets the rows of the sudoku
:param sudoku state: the state
of the sudoku - a list of lists.
return: a list of the rows
each element is a list.’’’

...



What makes a bad comment?

* Stating the obvious.
x = 5 # Sets x to 5.

* Used instead of good naming.
x = 0 # Set the total to 0.

* Out-of-date, separate from the code it
describes, or flat out wrong.

* More comments than code is (usually) a sign
that your program needs to be reorganised.



Rules of thumb for commenting

* Do document functions, classes and modules
using proper docstrings.

* Don’t use comments as a substitute for good
practice in other areas of code quality
(organisation, naming, etc.).

* A good starting point is one comment for three
to four lines of code (very rough guide).



Variable naming rules (recap)

* Can only contain letters, numbers and
underscores ’ ’.

* Must start with a letter or underscore.
* Are case sensitive.
* Cannot be a reserved word (def, if, class,

etc.).



Variable naming good practice

* Should tell you what the variable is being used
for.

* Should not shadow a name in a greater scope,
i.e. don’t use list as a variable name.

* By convention, variables that start with an
underscore, have a special purpose in python.
Don’t use them unless you are adhering to this
convention (private attributes of classes).



Variable naming good practice
(cont.)
* Can be long (within reason). Most IDEs will

autocomplete them for you anyway.
sum of negative numbers is perfectly fine,
and much better than trying to abbreviate it to
sonn.

* Should not be very similar to other variable
names.
sum of all negative numbers is OK, but
shouldn’t be used with the above, since it’s not
clear what the difference between them is.



Question

* Is it ever OK to use 1 character variable names,
such as i or x?



Answer

* Yes, as long as their meaning and usage is
clear.

* i is often used as a shorthand for index in for
loops.

* x, y and z are often used as variables for
coordinate systems.

* It should generally be avoided though if the
variables have a broad scope or will be used in
many different places.



Organisation
* We can organise code by separating it into

functions and modules (files).
* You can import your own files in the same way

you import built-in modules.
import homework 3 imports the python file
named ‘homework 3’. Thereafter any functions
in that file can be used by writing:
homework 3.function name(...).

* Well organised code and well structured code is
far easier to follow, maintain and extend.



Using functions to organise your
code
* A good function does one thing.
* A good function works at one level of

abstraction.
* Functions promote abstraction, i.e. they

separate the what from the how.
* Functions make code easier to maintain. If there

is no repeated code in your program (it’s all
encapsulated in functions) you only need to
make a change in a single place.



Modules

* You can organise your code by placing functions
that are related to each other into modules.

* For example all your user input handling
functions might go in one module, all your
database interaction functions in another, your
data analysis in a third, etc.

* Keeping related functions together helps users
(and you) quickly determine where to look for
certain types of functionality.



Tips for using modules
* Make sure you give the module a descriptive

name.
* If there is code that should be run from within

the module, (testing code, debugging code, etc.)
make sure to put it in a:
if name == ’ main ’ suite. This allows
the module to be imported without running it.

* If your program is very large or very complex, it’s
a good idea to include a readme file explaining
how to use your program, or where to start.



Efficiency
* Modern computers will usually have enough

power to solve most problems, even if the code
is not perfectly efficient.

* Programmer time is usually far more expensive
than computer time.

* This means that program readability and clarity
is (usually) more important than optimisation.

* It is not worth spending hours of your time to
shave a few seconds off the running time of a
program that you will only run once!



Where efficiency is important
* If your program is going to be run frequently, or

by lots of people, any performance
improvements can add up over time.

* If your program is too slow to run at all. A poor
choice of algorithm or data structure may
prevent your program from ever finishing.

* Where the efficient approach is just as readible
or maintainable as the inefficient one. For
example - don’t read through a file one time for
each attribute. Don’t convert a string to an
integer and then to a float.



Standards and Guidelines



Why have standards and
guidelines

* They are particularly useful for group software
development.

* Some decisions can prevent code from running
at all (i.e. different indentation).

* Make code more readible and maintainable.
* New people on the project can contribute much

faster.



What do standards and guidelines
cover

* Documentation and commenting styles.
* Variable naming conventions (CamelCase,
lower with underscores, etc.)

* Code organisation and structure.
* Unit testing and debugging procedures.
* Many other aspects.



Standards in python
* Many python specific coding conventions are

described in PEP (Python Enhancement
Proposal) 0008-Style Guide for Python Code,
which is based on the assumption that code is
read more than it is written. The PEP can be
found on the python website.

* The worst standard is no standard at all (or
multiple different standards). Even if you don’t
completely agree with the standard your team is
using, it is better to follow it than to do
something different.

https://www.python.org/dev/peps/pep-0008/

