
COMP1730/6730
Programming For Scien7sts

Overview

•  Disclaimer!	
•  So#ware	Design	is	a	very	big	topic:	only	rough	ideas	and	terminology	here	
•  For	much	more	detail	take	COMP2100,	COMP2120,	and	later	courses.	

•  So#ware	Development	Methodologies	
•  Ideas	to	implementaFon:	moving	between	levels	of	abstracFon	

•  Design	Principles	
•  Tips	and	heurisFcs	for	making	design	decisions	

•  Design	PaIerns	
•  Solving	common	programming	problems	

•  ConvenFons	and	Standards	

Why Good SoBware Design is Important

• Y2K	Problem	
•  Design	failure:	so#ware	using	two	digits	for	years	
(e.g.,	99	for	1999)	
•  EsFmated	US$500	billion	worldwide	to	fix	

• Knight	Capital	"Flash	Crash"	
•  Poorly	designed	(and	tested)	code	switched	
buying	and	selling	in	stock	market	
•  Company	lost	$440	million	in	about	30	minutes	

From Idea to Implementa7on

• High-level	vision	

• People,	things,	and	interacFons	

• Modeling		

• Defining	code	structure	

•  ImplementaFon	

Cool	Idea	

Who?	What?	How?	

EnFFes,	Structures	&	Processes	

Types,	Classes,	FuncFons	

Code		

Two SoBware Development Methodologies

• Waterfall	(“Big	Design	Up	Front”)	
•  Development	proceeds	in	strict	sequence:	

•  Requirements	gathering	ð	Design	ð	ImplementaFon	ð	VerificaFon	ð	Maintenance	
•  Introduced	by	Royce	in	1970	as	a	non-working	model	of	development	
•  Useful	for	comparison;	adopted	in	some	industry	

• Agile	Methods	
•  Many	variants	(e.g.,	eXtreme	Programming,	Scrum)	with	similar	philosophy	
•  Design	as	an	itera+ve	process	

•  Understanding	a	problem	as	it	is	solved	
•  AdapFve	planning,	early	delivery,	conFnuous	improvement	

Design and Development Techniques

• Use	Cases	and	User	Stories	
•  Requirements	captured	in	terms	of	short	stories	about	how	certain	features	
or	services	might	be	used	
•  Useful	for	making	sure	stakeholders	and	developers	agree	

•  Test/Behaviour-Driven	Development	
•  Required	funcFonality	specified	through	unit	tests	and	other	forms	of	
automated	tesFng	
•  Tools	exist	for	systemaFcally	turning	high-level	behavioural	specificaFon	into	
executable	tests	(e.g.,	Python	behave!)	

Design and Development Techniques

•  “Release	Early,	Release	OPen”	
•  Agile	methods	emphasise	having	working	
(but	incomplete)	code	early	
•  Enhances	feedback	from	users	
(Users	=	You/Group	in	smaller	projects)	

•  Failing	Fast	and	ConQnuous	Deployment	
•  Knowing	when	something	is	broken	as	soon	
as	possible	means	it	can	be	fixed	faster	
•  ConFnuously	tesFng	code	with	automated	
tests	and	users	will	find	problems	early	

Some Design Principles

• Keep	it	Simple	
•  “Make	everything	as	simple	as	possible	but	no	simpler”	
•  Keep	breaking	down	a	problem	unFl	what	you	are	trying	to	do	can	be	
explained	precisely	in	a	few	sentences	

•  SeparaQon	of	Concerns	(Modularity)	
•  Reasoning	about	mulFple	interacFons	is	difficult	
•  Organise	aspects	of	your	problem	so	you	can	focus	on	solving	one	at	a	Fme	
•  Focus	on	what	informaFon	is	needed	at	each	stage	in	a	process	
•  E.g.,	HTML	+	CSS	+	Javascript;	Model,	View,	Control	

Some Design Principles

•  Principle	of	Least	Surprise	(Consistency)	
•  Design	funcFons,	etc.	so	that	naming,	behaviour,	arguments,	etc.	are	consistent	
•  SFck	with	familiar	convenFons	whenever	possible	

•  Don’t	Repeat	Yourself	(DRY)	
•  “Every	piece	of	knowledge	must	have	a	single,	unambiguous,	authorita;ve	
representa;on	within	a	system.”	

•  Less	duplicated	informaFon	means	less	synchronisaFon	

•  You	Ain’t	Gonna	Need	It	(YAGNI)	
•  “Always	implement	things	when	you	actually	need	them,	never	when	you	just	foresee	
that	you	need	them.”	

•  Code	and	features	you	don’t	need	are	breeding	grounds	for	bugs	

Design PaJerns

• A	generic	soluFon	to	a	commonly	occurring	problem	
•  Not	a	complete	design,	but	a	design	template	

•  Examples:	
•  Adapter	paWern	allows	two	incompaFble	interfaces	to	work	together.	Closely	
related	to	the	Decorator	paWern,	which	has	a	nice	implementaFon	in	Python.	
•  Iterator	paWern	provides	a	mechanism	to	traverse	every	element	of	a	
container	(without	having	to	know	how	the	elements	are	stored).	
•  Factory	paWern	is	used	to	create	objects	when	the	(sub)type	is	not	known	
unFl	runFme.	
•  Command	paWern	is	used	to	prepare	a	sequence	of	operaFons	before	
execuFng	them	and	can	help	implement	undo	features.	

Standards and Conven7ons

•  Standards:	rules	for	wriFng	and	formaong	code	
that	are	enforced	within	a	project,	company	or	
industry.	

	
• ConvenQons:	guidelines	for	how	you	should	write	
your	code	so	that	it	is	consistent,	robust	and	easily	
understood	by	a	community	of	programmers.		

“The	good	thing	about	
standards	is	that	there	
are	so	many	of	them	to	
choose	from”	
―	Grace	Hopper	

take	home	message	
It	doesn’t	maIer	which	standard	you	choose	as	

long	as	you	choose,	and	sFck	to,	one.	

Why use Standards?

•  Standards	help	improve	readability	and	ease	so#ware	maintenance	
•  This	is	especially	important	when	you	consider	than	most	so#ware	is	maintained	by	someone	
other	than	the	original	author(s)	

•  Allows	the	creaFon	of	tools	to	assist	with	development,	documentaFon,	and	tesFng	
•  O#en	makes	it	easier	to	find	specific	funcFons	and	search	for	help	

•  Eliminates	the	need	to	make	decisions	(buffet	syndrome)	
•  Lowers	the	barrier	to	learning	a	new	tool	or	language	(prevents	lock-in)	

•  E.g.,	standard	key	bindings	for	many	applicaFons	(Ctrl-C	and	Ctrl-V	for	cut	and	paste,	resp.)	

•  Not	everyone	will	like	all	the	convenFons	used	in	any	given	project,	but	the	benefit	of	
consistency	that	standards	bring	to	a	project	will	outweigh	the	individual	tastes	of	a	
single	team	member	

•  We	have	already	seen	and	been	using	a	number	of	standards	in	the	guise	of	good	
programming	prac;ce.	

Mathema7cal Analogy

• Before	standard	algebraic	notaFon	mathemaFcal	theorems	used	to	
be	stated	like	this:	

(Euclid	Prop.	47)	In	a	right	triangle	the	square	drawn	on	the	side	opposite	the	
right	angle	is	equal	to	the	squares	drawn	on	the	sides	that	make	the	right	angle.	

• With	modern	notaFon	and	convenFons	we	can	more	simply	state	
Pythagoras’s	Theorem	as	(modulo	definiFons	of	a,	b,	and	c)	

Naming Conven7ons

• One	of	the	biggest	efforts	in	establishing	coding	convenFons	
surrounds	the	naming	of	variables	and	funcFons	
• Python	restricts	names	to	start	with	a	leIer	or	underscore	and	
contain	only	leIers,	numbers	and	underscores.	The	rest	is	up	to	the	
programmer.	

CAPITALISED_WITH_UNDERSCORES
camelCase
UpperCamelCase
underscore_separated
_underscore_prefixed
__underscore_surrounded__

constants	

class	names	

funcFons	and	variables	

Code Layout

•  Another	important	convenFon	has	to	do	with	code	layout	
•  In	Python	indentaFon	is	significant	so	the	language	forces	a	certain	layout	
•  However,	you	sFll	have	a	choice	of	tab	or	space,	and	how	many	spaces	

•  The	maximum	length	of	any	one	line	of	code	is	also	a	convenFon	
•  Older	programmers	used	80	characters,	but	the	new	standard	is	more	like	120	
•  PyCharm	indicates	the	maximum	line	limit	with	a	margin	line	
•  Of	course,	this	is	not	a	hard	rule	and	can	someFmes	be	violated	
•  When	a	line	is	broken	there	is	a	choice	about	where	to	break	it	

•  O#en	within	parentheses,	at	a	comma	or	inline	operaFon	
•  And	then	how	to	align	the	conFnued	line	

•  Scripts	to	be	wrapped	in	if __name__ == "__main__":

Documenta7on Conven7ons

• Use	docstrings	for	funcFons	and	classes	
•  PyCharm	helps	with	automaFc	docstring	templates	(type	"""	<enter>)	

• Use	comments	where	appropriate	(but	don’t	over	do)	
•  And	always,	always	keep	your	comments	up	to	date	with	the	code	

 """
 Concise description of the function’s purpose.

 :param first_argument: A short description of the first argument.
 :param second_argument: A short description of the second argument.
 :return: A short description of the return value.

 Optionally, more details about the function including, perhaps, a description of how
 it works, what algorithms are implemented, any side effects of the function, special
 cases that the caller should be aware of, and examples for how it can be used.
 """

Standards for Unit Tes7ng

•  There	are	no	hard	rules	about	unit	tesFng	but	certain	convenFons	are	
popular	
•  Build	tests	using	the	unittest or pytest	modules.	Similar	libraries	exist	
for	other	programming	languages.	
•  Have	one	unit	test	for	each	class/module/funcFon	in	your	code.	
•  Name	unit	tests	based	on	what	funcFonality	and	behaviour	is	being	tested.	
•  Do	not	mix	test	code	with	producFon	code.	
•  agent_tests.py	

import pytest

def test_get_personality():

unit	tests	for	the	agent	class/module	

unit	test	for	the	get_personality	funcFon	

Other Guidelines

• Brevity.	Keep	lambda	expressions	and	list	comprehension	short	(i.e.,	
no	more	than	about	one	line)	
• Consistency.	When	modifying	someone	else’s	code	follow	the	
exisFng	convenFons	(even	if	they	don’t	seem	right	to	you	at	first)	
• More	whitespace.	Actually,	use	less:	avoid	extraneous	whitespace	

Many	Python	coding	convenFons	are	described	in	PEP	(Python	
Enhancement	Proposal)	0008	―	Style	Guide	for	Python	Code	based	on	
the	insight	that	code	is	read	more	o#en	that	it	is	wriIen	

hIps://www.python.org/dev/peps/pep-0008/	
	

Tips for Star7ng a New Project

QuesQons	
•  Understand	your	problem.	Can	you	break	it	down?	Is	it	similar	to	other	problems	you	have	seen?	
•  What	is	the	high-level	idea?	Who	are	the	actors	(people,	things,	interfaces)?	How	will	they	be	
modelled?	

•  What	are	your	inputs	and	outputs?	How	will	data	flow	through	your	system?	
•  How	will	you	represent	your	data?	How	will	you	present	your	results?	

Process	
•  Design	top-down.	Implement	boIom-up.	Iterate.	
•  Set	up	a	repository.	
•  Implement	and	test	components	in	isolaFon.	Write	test	cases.	
•  Refactor	as	you	go,	but	don’t	opFmise	too	early.	
•  Leave	unimportant	funcFonality	unFl	later	(use	dummy	funcFons	or	pass).	

