
COMP1730/COMP6730
Programming for Scientists

Code Quality & Debugging

Announcements

* Homework 2 marked in Your lab group this
week.

* Homework 3 due this Sunday, 24th March,
11:55pm.

* From now on, homeworks will be marked on
functionality and code quality.

Lecture outline

* What is “code quality”?
* Debugging

What is code quality and why
should we care?
* Writing code is easy – writing code so that you

(and others) can be confident that it is correct is
not.

* You will always spend more time finding and
fixing the errors that you made (“bugs”) than
writing code in the first place.

* Good code is not only correct, but helps people
(including yourself) understand what it does and
why it is correct.

* Example 1: the interpreter doesn’t care what
you call your variables, as long as they are valid
names, but giving them meaningful names
makes your code easier to read and understand.

* Example 2: python ignores comments, but they
can also make code much easier for a human to
understand.

* Example 3: We don’t need to use functions, but
if used appropriately they make our code much
easier to understand, write and maintain.

(Extreme) example
* What does this function do? Is it correct?

def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC-1:-ABC-1:-1]
if ABC == 0:

return 0
abC = AbC(ABc[-ABC:ABC-1:])
if ABc[-ABC] < 0:

abC += ABc[len(ABc)-ABC]
return abC

(Extreme) example – continued
* What does this function do? Is it correct?

def sum negative(input list):
'''Sums up all the negative
numbers in input list.'''

total = 0
for number in input list:

if number < 0:
total = total + number

return total

Aspects of code quality

* Commenting and documentation (today).
* Variable and function naming (today).
* Code organisation (today and later).
* Code efficiency (today and later).

What makes a good comment?
* Raises the level of abstraction: what the code

does and why, not how.
- Except when “how” is especially complex.

* Describe parameters and assumptions
– python is not a typed language.

* Up-to-date and in a relevant place.
* Don’t use comments to make up for poor quality

in other aspects (organisation, naming, etc.).
* Good commenting is more important when

learning to program and when working with
other people.

What makes a bad comment?
* Stating the obvious.
x = 5 # Sets x to 5.

* Used instead of good naming.
x = 0 # Set the total to 0.

* Out-of-date, separate from the code it
describes, or flat out wrong.
loop over list to compute sum:
avg = sum(the list) / len(the list)

* More comments than code is (usually) a sign
that your program needs to be reorganised.

Function docstring
* A (triple-quoted) string as the first statement

inside a function (module, class) definition.
* State the purpose and limitations of the

function, parameters and return value.

def solve(f, y, lower, upper):
'''Returns x such that f(x) = y.
Assumes f is monotone and that a solution
lies in the interval [lower, upper]
(and may recurse infinitely if not).'''
...

* Can be read by python’s help function.

Function Docstrings (continued)
* Can formally specify each parameter and the

return value.

def solve(f, y, lower, upper):
'''Finds x such that f(x) = y.
:param f: a monotonic function with one

numeric parameter and return value.
:param y: integer or float, the value of

f to solve for.
...
:return: float, the value of x such that

f(x) = y.

Rules of thumb for commenting

* Do document functions, classes and modules
using proper docstrings.

* Don’t use comments as a substitute for good
practice in other areas of code quality
(organisation, naming, etc.).

* A good starting point is one comment for three
to four lines of code (very rough guide).

Good naming practice
* The name of a function or variable should tell

you what it does / is used for.
* Variable names should not shadow names of

standard types, functions, or significant names
in an outer scope.

def a fun fun(int):
a fun fun = 2 * int
max = max(a fun fun, int)
return max < int

(more about scopes in a coming lecture).

* Names can be long (within reason).
- A good IDE will autocomplete them for you.

* Short names are not always bad:
- i (j, k) are often used for loop indices.
- x, y and z are often used for coordinates.
- best avoided if the scope is large.

* Don’t use names that are confusingly similar in
the same context.
- E.g., sum of negative numbers vs.
sum of all negative numbers – what’s
the difference?

Code organisation

* Good code organisation
- avoids repetition;
- fights complexity by isolating subproblems and

encapsulating their solutions;
- raises the level of abstraction; and
- helps you find what you’re looking for.

* python constructs that support good code
organisation are functions, classes (not covered
in this course) and modules (later).

Functions

* Functions promote abstraction, i.e. they
separate what from how.

* A good function (usually) does one thing.
* Functions reduce code repetition.
- Helps isolate errors (bugs).
- Makes code easier to maintain.

* A function should be as general as it can be
without making it more complex.

def solve(lower, upper):
’’’Returns x such that
x ** 2 * pi ∼= 1. Assumes ...

vs.

def solve(f, y, lower, upper):
’’’Returns x such that f(x) ∼= y.
Assumes ...

Efficiency
Premature optimisation is the root of all evil in
programming.

C.A.R. Hoare

* Modern computers usually have enough power
to solve your problem, even if the code is not
perfectly efficient.

* Programmer time is far more expensive than
computer time.

* Code correctness, readability and clarity is more
important than optimisation.

When should you consider
efficiency?

* For code that is going to run very frequently.
* If your program is too slow to run at all.

A poor choice of algorithm or data structure may
prevent your program from finishing, even on
small inputs.

* When the efficient solution is just as simple and
readable as the inefficient one.

Debugging

What is a “bug”?
We could, for instance, begin with cleaning up
our language by no longer calling a bug a bug
but by calling it an error. It is much more
honest because it squarely puts the blame
where it belongs, viz. with the programmer
who made the error. The animistic metaphor
of the bug that maliciously sneaked in while
the programmer was not looking is
intellectually dishonest as it disguises that the
error is the programmer’s own creation.

E. W. Dijkstra, 1988

The debugging process
1. Detection – realising that you have a bug.
2. Isolation – narrowing down where and when it

manifests.
3. Comprehension – understanding what you did

wrong.
4. Correction; and
5. Prevention – making sure that by correcting the

error, you do not introduce another.
6. Go back to step 1.

Syntax Errors

* It is not valid Python Code
* The interpreter will tell you where they are, but

you may need to look at the line above or below
for a missing bracket, closing string, etc.

* Most good IDEs will highlight syntax errors
before you even run the code.

Runtime Errors

* The code is valid Python code - but it’s being
used to do something Python doesn’t know how
to do.

* Causes an exception when run (possibly only
under certain conditions).

* Learn to read (and understand) Python’s error
messages. ZeroDivisionError is largely
self-explanatory, but understand what causes
Python to raise an AttributeError.

* Semantic errors (logic errors).
- The code is syntactically valid and runs

without error, but it does the wrong thing
(perhaps only sometimes).

- To detect this type of bug, you must have a
good understanding of what the code is
supposed to do. Testing can help with this
(more in a later lecture).

- Logic errors are usually the hardest to detect
and to correct, particularly if they only occur
under certain conditions.

* python allows you to do many things that you
never should.

Isolating and understanding a fault
* Work back from where it is detected

(e.g., the line number in an error message).
* Find the simplest input that triggers the error.
* Use print statements (or debugger) to see

intermediate values of variables and
expressions.

* Test functions used by the failing program
separately to rule them out as the source of the
error.
- If the bug only occurs in certain cases, these

need to be covered by the test set.

Some common errors
* python is not English.

if s == 'y' or 'Y':
...

if (s == 'y') or ('Y'):
...

if (s == 'y') or True:
...

if True:
...

* Limits of floating point numbers (precision and
range).

* Loop condition not modified in loop.
def solve(f, y, lower, upper):

mid = (lower + upper) / 2
while math.fabs(f(mid) - y) > 1e-6:

if f(mid) < y:
lower = mid

else:
upper = mid

return mid

* Off-by-one.
k = 1
while k < n: # < or <= ?

k = k * 2
return k # k or k - 1?

