

COMP1730/COMP6730 Programming for Scientists

Functional Abstraction (with robots)

Lecture Outline

- * Announcements
- * The Warehouse Robot
- * Functional Abstraction
- ⋆ The Python Language: First Steps.

Important TODOs

- * Complete the demographic information questionnaire.
- * Sign up to a lab group.
 - If there is no place free in any lab at any time that you can attend:
 - don't sign up to a group you cannot attend;
 - email comp1730@anu.edu.au with your
 ANU ID, a complete list of all groups that you can attend, and any preference.
 - Labs start in week 2 (next week).
 - In-lab assessment starts in semester week 3.

- * To activate your account on the CSIT computers, you must log into STREAMS:
 - 1. https://cs.anu.edu.au/streams/;
 - 2. log in with your ANU user id and password;
 - 3. log out again.

Do this at least 24 hours before your first lab.

Student Course Representatives

- Develop skills sought by employers, including interpersonal, dispute resolution, leadership and communication skills.
- * Become empowered. Play an active role in determining the direction of your education.
- Become more aware of issues influencing your University and current issues in higher education.
- * Ensure students have a voice to their course convener, lecturer, tutors, and college.

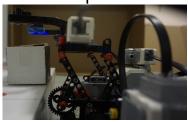
Roles and Responsibilities

- Act as the official liaison between your peers and convener.
- Be creative, available and proactive in gathering feedback from your classmates.
- Attend regular meetings, and provide reports on course feedback to your course convener and the Associate Director (Education).
- Close the feedback loop by reporting back to the class the outcomes of your meetings.

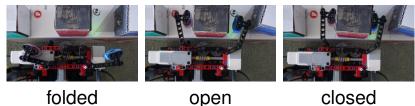
Nomination Process

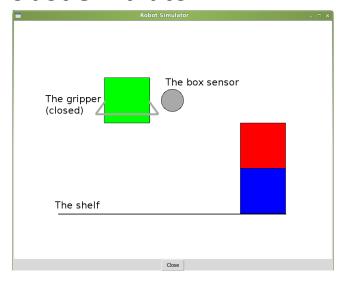
- * Please contact me by 4th March to nominate yourself as a course representative.
- * Alternatively e-mail: comp1730@anu.edu.au
- ANUSA and PARSA offer course representative training on 12th March to give you skills to be an effective course representative.
- Contact ANUSA President, Eleanor Kay, for more information: sa.president@anu.edu.au

The Robot



* Drive left/right along the shelf:


* Move lift up/down:


Change position of the gripper:

- * Moving sideways or down, the gripper may hit boxes if it is not folded.
- Folding/unfolding the gripper may hit boxes in adjacent stacks.

The robot simulator


```
>>> import robot
```

Start new simulation:

```
>>> robot.init()
```

Start simulation with larger area:

```
>>> robot.init(width = 11, height = 6)
```

Start simulation with random boxes:

Drive right/left one step:

```
>>> robot.drive_right()
```

>>> robot.drive_left()

Move the lift up one step:

>>> robot.lift_up()

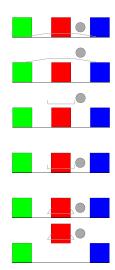
Move the lift down one step:

>>> robot.lift_down()

Change gripper position:

- >>> robot.gripper_to_open()
- >>> robot.gripper_to_closed()
- >>> robot.gripper_to_folded()
- If the robot hits a box, no command works until a new simulation is started.

* How to pick up a box without hitting the box(es) next to it?



* How to pick up a box without hitting the box(es) next to it?

```
robot.lift_up()
robot.gripper_to_open()
robot.lift_down()
robot.gripper_to_closed()
robot.lift_up()
```

* A *program* is a sequence of instructions.

Libraries, modules, namespaces

- Library is a generic term for a collection of (useful) functions, data structures, etc.
- * In python, libraries are called *modules*.
- * Importing a module,

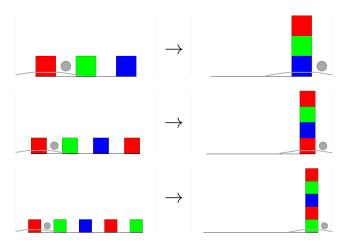
```
import math
import robot
```

makes its content available to use.

- * Imported names are prefixed with the module name, as in math.pi, robot.lift_up, etc.
 - They are placed in a separate namespace (more about namespaces later in the course).

- * How does python find modules?
 - Standard modules (e.g., math) are installed in a specific location on the file system.
 - Non-standard modules (e.g., robot) must be in the current working directory (cwd).

```
>>> import os
>>> os.getcwd()
'/Users/jeffrey/COMP1730/Lecture2'
```


 When running a program, the cwd is (normally) the directory where the file is.

Programming and functional abstraction

Problem: Building a tower


```
robot.init(width = 7, boxes = "flat")
robot.drive_right()
robot.lift_up()
robot.gripper_to_open()
robot.lift_down()
robot.gripper_to_closed()
robot.lift_up()
robot.drive_right()
robot.drive_right()
robot.gripper_to_open()
robot.lift.down()
robot.gripper_to_closed()
robot.lift_up()
robot.drive_right()
robot.drive_right()
robot.gripper_to_open()
robot.lift.down()
```


Functional abstraction

- * In programming, a *function* (also known as "procedure" or "subroutine") is a piece of the program that is given a name.
 - The function is called by its name.
 - A function is defined once, but can be called any number of times.

- * Why use functions?
 - Abstraction: To use a function, we only need to know what it does, not how.
 - Break a complex problem into smaller parts.

"Engineering succeeds and fails because of the black box" Kuprenas & Frederick, "101 Things I Learned in Engineering School"

Function definition in python

```
def move_to_next_stack():
    robot.drive_right()
    robot.drive_right()
} suite
```

- * def is a python keyword ("reserved word").
- ★ The function's name is followed by a pair of parentheses and a colon.
 - Inside the parentheses are the function's parameters (more on this in coming lectures).
- * The *function suite* is the sequence of statements that will be executed when the function is called.

Function definition in python

```
def grasp_box_on_shelf():
    robot.lift_up()
    robot.gripper_to_open()
    robot.lift_down()
    robot.gripper_to_closed()
    robot.lift_up()
```

- * In python, a suite is delimited by *indentation*.
 - All statements in the suite must be preceded by the same number of spaces/tabs (standard is 4 spaces).

Function definition in python

```
def release_and_pickup_next():
    robot.gripper_to_open()
    robot.lift_down()
    robot.gripper_to_closed()
    robot.lift_up()
```

- ★ The def statement only defines the function it does not execute the suite.
- * The whole definition is itself a statement.

Building a tower of 5 boxes

```
robot.init(width = 9, boxes = "flat")
robot.drive_right()
grasp_box_on_shelf()
move_to_next_stack()
release_and_pickup_next()
move_to_next_stack()
release_and_pickup_next()
move_to_next_stack()
release_and_pickup_next()
move_to_next_stack()
robot.gripper_to_folded()
robot.lift_down()
```


The python language: First steps

Syntax

- * The *syntax* of a (programming) language is the rules that define what is a valid program.
- * A python program is a sequence of *statements*:

```
def move_twice():
    robot.drive_right()
    robot.drive_right()
```

```
- calling a function: move_twice()
robot.lift_up()
```

- importing a module: import robot
- ...and a few more.

Whitespace

- * Spaces, tabs and end-of-line are known as whitespace.
- The whitespace before a statement is called indentation.
- ⋆ In python, whitespace has two special roles:
 - end-of-line marks the end of a statement (some exceptions, more later in the course);
 - indentation defines the extent of a suite of statements.
- ⋆ Other than this, whitespace is ignored.

Permitted names in python

* A function name in python may contain letters, numbers and underscores (_), but must begin with a letter or undescore.

Allowed	Not allowed
moverighttwice	move right twice
move_right_2	2_steps_right
is_box_red	is_box_red?
imPort	import

- * Reserved words cannot be used as names.
- Names are case sensitive: upper and lower case letters are not the same.

Comments

* A hash sign (#) marks the beginning of a comment; it continues to end-of-line.

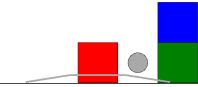
```
robot.init(width = 7) # use a wider shelf
# grasp the first box:
robot.lift_up()
...
```

- Comments are ignored by the interpreter.
 - Comments are for people.
 - Use comments to state what is not obvious.
- If it was hard to write, it's probably hard to read.
 Add a comment. (Punch & Enbody, Rule 6)

 Write comments to describe what a function does, and when it should be expected to work.

```
# Pick up a box from the shelf, without
# hitting adjacent boxes.
# Assumptions: The robot (gripper) is in
# front of the box; the gripper is folded
# and the lift is down.
def grasp_box_on_shelf():
```

. . .



Testing and debugging

Test, test, test

- * How do we know our program works?
 - Specify the assumptions under which the program (or function) is meant to work.
 - Test it with a variety of cases that fall under those assumptions.
 - Particularly, "edge cases".

Errors

- * Errors will happen.
- * Read the error message!

* Some common errors:

- SyntaxError:You have broken the rules of python syntax.
- NameError or AttributeError:
 You have used a (function) name that doesn't exist. Check for typos.
- IndentationError:Too much or too little indentation.
 - All statements in a function suite must have the same indentation.
 - All statements outside function definitions must have no indentation.