
COMP1730/COMP6730
Programming for Scientists

Sequence types



Mid-Semester Exam
* Mid-semester exam: Wednesday 3 April, 2019.

- Two sittings, 6:00pm and 8:00pm.
- You should receive an email with date, time

and location from timetabling.
- In the CSIT labs.
- A mix of short answer and programming

questions.
- No permitted materials, but resources

available on the lab computers.
* Read information about deferred assessment

on course assessment page.



Homeworks

* Homework 3 due this Sunday (24 March,
11:55pm).

* Marked on code quality and functionality.
* If it doesn’t meet the specification, it won’t be

marked.
* Discussion in labs next week (Week 5).



Lecture outline

* Sequence data types
* Indexing & slicing
* Sequence operations and functions
* Iteration with for loops



Properties of Sequences

* A sequence contains zero or more values.

* Each value in a sequence has a position, or
index, ranging from 0 to n − 1.

* The indexing operator can be applied to all
sequence types, and returns the value at a
specified position in the sequence.
- Indexing is done by writing the index in square

brackets after the sequence value, like so:
sequence[pos]



Sequence data types

* python has three built-in sequence types:
- strings (str) contain only text;
- lists (list) can contain a mix of value types;
- tuples (tuple) are like lists, but immutable.

* Sequence types provided by other modules:
- e.g., NumPy arrays (numpy.ndarray).



Problem: Sensor modelling

* Time series of two measurements:

* IR sensor
(% of range)

* Tachometer
(1/360th rev.)



* Is there a linear relation between x and y?



* Fit a straight line (y = ax + b) as close to all of
the points as possible.
- This can be done by solving a least-squares

optimisation problem.
- Simpler idea: Calculate the average slope

between pairs of (adjacent) points.
* Need to remove or ignore “outliers”.
* Calculate residuals (ri = yi − (axi + b)) and

check if they are normally distributed.



The list type

* list is python’s general sequence type.
* To make a list, write a comma-separated list of

elements in square brackets:

>>> x = [3.0, 1.5, 0.0, -1.5, -3.0]
>>> x
[3.0, 1.5, 0.0, -1.5, -3.0]
>>> type(x)
<class ’list’>



Indexing & length

3.0 1.5 0.0 -1.5 -3.0list:

index: 0 1 2 3 4
-5 -4 -3 -2 -1

* In python, all sequences are indexed from 0.
* The index must be an integer.
* python also allows indexing from the sequence

end using negative indices, starting with -1.
* The length of a sequence is the number of

elements, not the index of the last element.



* Sequence elements are accessed by writing the
index in square brackets, [].

>>> x = [3.0, 1.5, 0.0, -1.5, -3.0]
>>> x[1]
1.5
>> x[-1]
-3.0
>>> len(x)
5
>>> x[5]
IndexError: list index out of bounds



Slicing
* Slicing selects a subsequence of an existing

sequence.

sequence[start:end:step-size]

- start is the index of the first element in the
subsequence.

- end is the index of the first element after the
end of the subsequence.

- step-size allows skipping of elements.

* Slicing works on all built-in sequence types
(list, str, tuple) and returns the same type.



Slicing Example
* More on slicing next week.

>>> x = [3.0, 1.5, 0.0, -1.5, -3.0]
>>> x[0:3:1]
[3.0, 1.5, 0.0]
>> x[1:5:2]
[1.5, -1.5]
>>> x[2:3:1]
[0.0]
>>> x[3]
0.0



Indexing vs Slicing

* Indexing a sequence returns an element.
* The index must be valid (i.e. between 0 and

length - 1, or -1 and -length).
* Slicing a sequence returns a subsequence of

the same type.
* A slice may contain, 0, 1 or more elements.
* The indexes in a slice do not have to be valid.



Sequence Operations
* The + and * operators work with sequences.
* sequence 1 + sequence 2 results in

concatenation.

my list 1 = [1, 2, 3]
my list 2 = [2, 3, 4]
my list 1 + my list 2
>>> ...

* sequence * int results in repetition.

my list 1 = [1, 2, 3]
my list 1 * 3
>>> ...



Functions on Sequences
* There are many built-in functions that operate

on sequences:
- min and max return the smallest and largest

elements in the sequence.
- sum returns the sum of the elements in the

sequence.
- len returns the number of elements in the

sequence.
- sorted returns a list with the elements of

the sequence arranged in ascending order.
- x in sequence returns True iff x is an

element of the sequence.



The for .. in .. statement

for name in expression:
suite

1. Evaluate the expression, to obtain an iterable
collection.
- If value is not iterable: TypeError.

2. For each element E in the collection:
2.1 assign name the value E ;
2.2 execute the loop suite.



my list = [2, 3, 5, 7, 11]
for element in my list:

print(element * 2)

vs.
my list = [2, 3, 5, 7, 11]
i = 0
while i < len(my list):

element = my list[i]
print(element * 2)
i = i + 1



Iteration over sequences

* Sequences are an instance of the general
concept of an iterable data type.
- An iterable type is defined by supporting the
iter() function.

- python also has data types that are iterable
but not indexable (for example, sets and files).

* The for .. in .. statement works on any
iterable data type.
- On sequences, the for loop iterates through

the elements in order.


