
COMP1730/COMP6730
Programming for Scientists

Data: Values, types and
expressions.

Announcements

* Late enrolees: Read the news forum on wattle.
* Requests for placement in lab groups:
- must be sent to comp1730@anu.edu.au;
- must list all your available times.

* Reminder: Fill out the demographic questionaire
(on wattle).

* Reminder: Log into Streams before first lab.

Lecture outline

* Homework 1.
* Data and data types.
* Expressions: computing values.
* Variables: remembering values.

Homework 1

* Read and follow the submission instructions (or
your assignment may not get marked).

* In particular - it should not include anything
except function definitions, import statements
and comments (talk to your tutor about this).

* You should submit one file called unstack.py.
* You must not modify the functions
test unstack two or test unstack three.

What is “data”?
* The number of students currently

enrolled in the course.
* The words typed into a web search

engine.
* A time series of total rainfall in

Canberra for the month of June
since 1971.

* An elevation map of Australia.

* Most (scientific) applications of computing
involve summarising or deriving information
from data.

Example: Data analysis

* In 2019, enrolment in COMP1730/6730, at its
peak, was 315 students. In 2020, the enrolment
(so far) is 435 students. How big an increase, in
percent, is this?

* The increase is: 435 - 315

* as a fraction of the
2019 number:

(435 - 315) / 315

* in percent: ((435 - 315) / 315) * 100

Expressions
* ((435 - 315) / 315) * 100 is an

expression;
* it evaluates to 38.095...;
* 435, 315, 100 and 38.095... are all values.

* In interactive mode, the python interpreter will
print the result of evaluating an expression:

>>> ((435 - 315) / 315) * 100
38.095...

(with one exception, which we’ll see later).

python syntax (recap)
* A python program is a sequence of statements:
- import a module;
- function definition;
- function call expression.
- Every function call is an expression.

- ...and more we’ll see later.
* Comment: # to end-of-line.
* Whitespace:
- end-of-line ends statement (except for function

definition, which ends at the end of the suite);
- indentation defines extent of (function) suite.

python expressions
* Expressions are built up of:
- constants (“literals”);
- variables;
- operators; and
- function calls.

* When an expression is executed, it evaluates to
a value (a.k.a. the return value).

* Expressions can act as statements (the return
value is ignored), but statements cannot act as
expressions.

Continuation
* end-of-line marks the end of a statement.
* Except that,
- adding a “\” at the end makes the statement

continue onto the next line, e.g.,

(2 ** 0) + (2 ** 1) + (2 ** 2) \
+ (2 ** 3) + (2 ** 4)

- an expression enclosed in parentheses
continues to the closing parenthesis, e.g.,

math.sqrt((x2 - x1) ** 2 +
(y2 - y1) ** 2)

Values and Types

Every value has a type

* Value (data) types in python:
- Integers (type int)
- Floating-point numbers (type float)
- Strings (type str)
- Truth values (type bool)
- ...and many more we’ll see later.

* Types determine what we can do with values
(and sometimes what the result is).

* The type function tells us the type of a value:

>>> type(2)
<class ’int’>
>>> type(2 / 3)
<class ’float’>
>>> type("zero")
<class ’str’>
>>> type("1")
<class ’str’>
>>> type(1 < 0)
<class ’bool’>

Numeric types
* Integers (type int) represent positive and

negative whole numbers (0, 1, 2, −1, −17,
4096, . . .).

* Values of type int have no inherent size limit.
>>> 2 ** (2 ** 2)
16
>>> 2 ** (2 ** (2 ** 2))
65536
>>> 2 ** (2 ** (2 ** (2 ** 2)))
...

* Note: Can’t use commas to “format” integers
(must write 1282736, not 1,282,736).

* Floating-point numbers (type float) represent
decimal numbers.

* Values of type float have limited range and
limited precision.
- Min/max value: ±1.79× 10308.
- Smallest non-zero value: 2.22× 10−308.
- Smallest value > 1: 1 + 2.22× 10−16.
(These are typical limits; actual limits depend on
the python implementation.)

* Type float also has special values ± inf
(infinity) and nan (not a number).

* More about floating-point numbers and their
limitations in a coming lecture.

* Every decimal number is a float:
>>> type(1.5 - 0.5)
<class ’float’>
>>> type(1.0)
<class ’float’>

* The result of division is always a float:
>>> type(4 / 2)
<class ’float’>

* floats can be written (and are sometimes
printed) in “scientific notation”:
- 2.99e8 means 2.99× 108.
- 6.626e-34 means 6.626× 10−34

- 1e308 means 1.0× 10308.

Strings
* Strings (type str) represent text.
* A string literal is enclosed in single or double

quote marks:

>>> "Hello world"
'Hello world'
>>> '4" long'
'4" long'

- '4' and 4 are different!

* More about strings in a coming lecture.

Type conversion

* Explicit conversions use the type name like a
function:

>>> int(2.0)
>>> float(" -1.05")
>>> str(0.75 * 1.75)

* Conversion from str to number only works if
the string contains (only) a numeric literal.

* Conversion from int to float is automatic.
- E.g., int times float becomes a float.

Expressions: Operators and
Functions

Numeric operators in python

+, -, *, / standard arithmetic

** power (x ** n means xn)
// floor division
% remainder

* Some operators can be applied also to values of
other (non-numeric) types, but with a different
meaning (this is called “operator overloading”).

* We’ll see more operators later in the course.

Precedence

* There is an order of precedence on operators,
that determines how an expression is read:
- 2 * 3 - 1 means (2 * 3) - 1, not 2 * (3 - 1).
- -1 ** 5 means -(1 ** 5), not (-1) ** 5.

* Operators with equal precedence associate left:
- d/2*pi means (d/2)*pi, not d/(2*pi)

* ...except exponentiation, which associates right.
* Whenever it is not obvious, use parentheses to

make it clear.

Math functions
* The math module provides standard math

functions, such as square root, logarithm,
trigonometric functions, etc.

>>> import math
>>> help(math) # read documentation
...
>>> math.sqrt(3 ** 2 + 4 ** 2)
5.0

* Almost all math functions take and return values
of type float.

Comparison operators
<, >, <=, >= ordering (strict and non-strict)
== equality (note double ’=’ sign)
!= not equal

* Can compare two values of the same type (for
almost any type).

* Comparisons return a truth value (type bool),
which is either True or False (again different
to 'True' and 'False').

* Caution: Conversion from any type to type bool
happens automatically, but the result may not be
what you expect.

Variables

Variables

* A variable is a name that is associated with a
value in the program.
- The python interpreter stores name–value

associations in a namespace.
(More about namespaces later in the course.)

* A variable can be an expression: evaluating it
returns the associated value.

* A name–value association is created by the first
assignment to the name.

Valid names in python (reminder)

* A (function or variable) name in python may
contain letters, numbers and underscores (),
but must begin with a letter or undescore.

* Reserved words cannot be used as names.
* Names are case sensitive: upper and lower

case letters are not the same.
- Length Of Rope and length of rope are

different names.

Variable assignment

* A variable assignment is written

var name = expression

- Reminder: Equality is written == (two =’s).
- Assignment is a statement.

* When executing an assignment, the interpreter
1. evaluates the right-hand side expression;
2. associates the left-hand side name with the

resulting value.

Programming problem

* A block resting on an inclined
surface will begin to move if
the force pulling it down the
slope is greater than the
normal force times the static
friction coefficient (µs).

(Image from Wikipedia)

Say m = 1, g = 9.81, θ = 23◦ and µs = 0.62:
will the block move?

* Yes, if mg sin(θ) > mg cos(θ)µs.

The print function
* print prints text to the console:

>>> print("The answer is:", 42)
The answer is: 42

- Non-text arguments are converted to type str
before printing.

- print takes a variable number of arguments,
and prints them all followed by a newline.

* Print the result, and intermediate steps, when a
program is run in script mode.

