
COMP1730/COMP6730
Programming for Scientists

Data science

Lecture outline

* Analysing data: an example
* Advanced modules

Data analysis

* Reading data files
* Representing tables
* Working with data:

selecting, visualising,
counting

* Interpretation

Reading data files

* Many data file formats (e.g., excel, csv, json,
binary).

* Use a python module that helps with reading the
file format:

import csv
with open("filename.csv") as csvfile:

reader = csv.reader(csvfile)
data = [row for row in reader]

* More about (reading and writing) files later in
the course.

Representing tables

* Lists are 1-dimensional, but a list can contain
values of any type, including lists.

* A table can be stored as a list of lists, by row, for
example:
data[i] # i:th row
data[i][j] # j:th column of i:th row

* Indexing (and slicing) are operators
* Indexing (and slicing) associate to the left:
data[i][j] == (data[i])[j].

* A list comprehension creates a list by evaluating
an expression for each value in an iterable
collection (e.g., a sequence).
first col = [row[0] for row in data]
last two cols = [row[-2:]

for row in data]

* Can also have a filtering condition:
sel rows = [row for row in data

if row[0] > 1]

* sorted(seq) returns a list with values in seq
sorted in default order (<).
- We can sort the rows in a table.
- Reminder: comparison of sequences is

lexicographic.
* sorted(seq, key=fun) sorts value x by
fun(x).
def new order(row):

return -row[-1] # decreasing
on last col

sd = sorted(data, key=new order)

Descriptive statistics

* min(seq);
* max(seq);
* mean (sum(seq) / len(seq));
* variance.
* No built-in function for median.
def median(seq):

return sorted(seq)[len(seq) // 2]

Visualisation

* The purpose of visualisation is to see or show
information – not drawing pretty pictures!

* Different kinds of plots show different things:
- histogram, pie-chart or cumulative distribution
- scatterplot
- line and area plot

* Use one that best makes the point!
* Choose your dimensions carefully.
* Label axes, lines, etc.

Using matplotlib

import matplotlib.pyplot as plot

plot.hist([first col, last col])
plot.legend(["column A", "column D"])
plot.show()

plot.plot(first col, last col)
plot.xlabel("column A")
plot.ylabel("column D")
plot.show()

* Documentation: matplotlib.org

matplotlib.org

Interpretation

* Understand what the data represents.
* Statistical significance.
* Over-fitting.
* Correlation is not causation.

900 920 940 960 980 1000 1020
0

200

400

600

800

1000

Gallery

Source: https://plot.ly/javascript/basic-charts/

Visualisation Tips

* Use a chart that is appropriate for your data.
* Format your chart appropriately, labels, title,

axis, scale, etc., from within the code.
* Make sure you colour scheme works well for

printed reports (including black and white).
* Be consistent with your colours and styles

across figures in the same report.

Animation, Interfaces and Videos
* You can produce animations in matplotlib.
* Think of animation as drawing several individual

graphics, one after another.
* You can also use matplotlib to create

interactible graphical user interfaces, with
buttons and other controls.

* If you have proper codecs installed, you can
turn your animation into videos.

* There are good tutorials available if you are
interested in exploring these topics further (we
don’t go over them in this course).

Advanced modules

NumPy and SciPy
* The NumPy and SciPy libraries are not part of

the python standard library, but often considered
essential for scientific / engineering applications.

* The NumPy and SciPy libraries provide
- an n-dimensional array data type (ndarray);
- fast math operations on arrays/matrices;
- linear algebra, Fourier transform, random

number generation, signal processing,
optimisation, and statistics functions;

- plotting (via matplotlib).
* Documentation: numpy.org and scipy.org.

numpy.org
scipy.org

NumPy Arrays
* numpy.ndarray is sequence type, and can

also represent n-dimensional arrays.
- len(A) is the size of the first dimension.
- Indexing an n-d array returns an (n − 1)-d

array.
- A.shape is a sequence of the size in each

dimension.
* All values in an array must be of the same type.
* Element-wise operators, functions on arrays.
* Read/write functions for some file formats.

Generalised indexing
* If A is a 2-d array,
- A[i,j] is element at i, j (like A[i][j]).
- A[i,:] is row i (same as A[i]).
- A[:,j] is column j.
- : can be start:end.

* If L is an array of bool of the same size as A,
A[L] returns an array with the elemnts of A
where L is True (does not preserve shape).

* If I is an array of integers, A[I] returns an
array with the elemnts of A at indices I (does
not preserve shape).

Pandas

* Library for (tabular) data analysis.
- Special types for 1-d (Series) and 2-d

(DataFrame) data.
- General indexing, selection, alignment,

grouping, aggregation.
* Documentation: pandas.pydata.org
* Beware: Pandas data types do not behave as

you expect.

pandas.pydata.org

