
COMP1730/COMP6730
Programming for Scientists

Functions, part 2

Announcements

* Homework 4 marking in the labs next week.
* You must attend your lab group unless you have

made prior arrangements with the convener.

Lecture outline

* Recap of functions.
* Namespaces & references.

Functions (recap)
* A function is a piece of code that can be called

by its name.
* Why use functions?
- Abstraction: To use a function, we only need

to know what it does, not how.
- Readability.
- Divide and conquer – break a complex

problem into simpler problems.
- A function is a logical unit of testing.
- Reuse: Write once, use many times (and by

many).

Function definition

def change in percent(old, new):
diff = new - old
return (diff / old) * 100

name parameters

suite
4

spaces

* The function suite is defined by indentation.
* Function parameters are variables local to the

function suite; their values are set when the
function is called.

* The def statement only defines the function
– it does not execute the function.

Function call

* To call a function, write its name followed by its
arguments in parentheses:

change in percent(315, 435)

* Order of evaluation: The argument expressions
are evaluated left-to-right, and their values are
assigned to the parameters; then the function
suite is executed.

* return expression causes the function call
to end, and return the value of the expression.

Functions without return

* A function call is an expression: its value is the
value return’d by the function.

* In python, functions always return a value: If
execution reaches the end of a function suite
without executing a return statement, the
return value is the special value None of type
NoneType.

* Note: None-values are not printed in the
interactive shell (unless explicitly with print).

Namespaces

Namespaces
* Assignment associates a (variable) name with a

reference to a value.
- This association is stored in a namespace

(sometimes also called a “frame”).

* Whenever a function is called, a new local
namespace is created.

* Assignments to variables (including parameters)
during execution of the function are done in the
local namespace.

* The local namespace disappears when the
function call ends.

Scope

* The scope of a variable is “the set of program
statements over which a variable exists (i.e., can
be referred to)”.
- In other words, the set of program statements

over which the namespace that the variable is
defined in persists.

* Because there are several namespaces, there
can be different variables with the same name in
different scopes.

def f(x):
y = x ** 2
return y - 1

x = 1
y = f(x + 1)

Image from pythontutor.com

pythontutor.com

def f(x):
y = x ** 2
return y - 1

x = 1
y = f(x + 1)

Image based on pythontutor.com

pythontutor.com

The local assignment rule
* python considers a variable that is assigned

anywhere in the function suite to be a “local
variable” (this includes parameters).

* When a non-local variable is evaluated, its value
is taken from the (enclosing) global namespace.

* When a local variable is evaluated, only the
local namespace is checked.
- If the variable is not defined there, python

raises an UnboundLocalError.
* The rule considers only variable assignment.

def f(x):
return x ** y

>>> y = 2
>>> f(2)
4

def f(x):
if y < 1:

y = 1
return x ** y

>>> y = 2
>>> f(2)
UnboundLocalError:
local variable ’y’
referenced before
assignment

* Modifying is not assignment!
- Assignment changes/creates the association

between a name and a reference (in the
current namespace).

- A modifying operation on a mutable object –
including index and slice assignment – does
not change any name–value association.

def f(x):
y = x ** 2
f list.append([x,y])
return y

>>> f list = []
>>> f(2)
4
>>> f(3)
9
>>> f list
[[2, 4], [3, 9]]

Argument values are references

* When a function is called, its parameters are
assigned references to the argument values.
- If an argument value refers to a mutable object

(for example, a list), modifications to this
object made in the function are visible outside
the function’s scope.

def f(ns):
total = 0
while len(ns) > 0:

next = ns.pop(0)
total = total + next

return total

>>> a list = [1,2,3]
>>> f(a list)
6
>>> a list
[]

Image from pythontutor.com

def f(ns):
total = 0
while len(ns) > 0:

next = ns.pop(0)
total = total + next

return total

>>> a list = [1,2,3]
>>> l sum = f(a list)

pythontutor.com

Other namespaces
* python’s built-in functions are defined in a

separate namespace.
* Imported modules are executed in their own

namespace.
- Names in a module namespace are accessed

by prefixing the name of the module.
* User-defined classes and objects (not covered

in this course) also have their own namespace
* Assignments (and defs) made outside a

function call are stored in the global namespace.

Searching for variables
* When evaluating a variable python checks

namespaces in a specific order LEGB.
- Local - python checks in the local namespace

(i.e. within the function definition).
- Enclosing - within a class definition or an

enclosing function definition.
- Global - within the global namespace.
- Built-ins - anything built into python.

* Python uses the first version of the variable it
finds.

* If none of the namespaces contain the variable,
python raises a NameError.

Why have namespaces?
* Why have namespaces at all, why not just have

everything global?
* Namespaces are about organisation and access

control.
* Like most aspects of code quality, they become

more important the larger the project.
* Place limitations on the life of a variable and

where it can be changed.
* If anyone can modify any variable from

anywhere in the project, and your project
contains 2 million lines of code, how can you tell
where (and why) a value was changed?

Guidelines for good functions

* Within a function, access only local variables.
- Use parameters for all inputs to the function.
- Return all function outputs (for multiple

outputs, return a tuple or list).
- ...except if the specific purpose of the function

is to send output elsewhere (e.g., print).
* Don’t modify mutable argument values, unless

the specific purpose of the function is to do that.
* Rule #4: No rule should be followed off a cliff.

