
COMP1730/COMP6730
Programming for Scientists

Sequence types, part 2

Announcements

* Homework 3 marks will be released today.
* Homework 4 is due tonight (11:55pm).
* Homework 5 has been released, due next

Thursday.
* Examination details will be coming soon.
* The course representatives will release another

survey soon (link in Wattle forum).
* Read the Wattle forum.

Lecture outline

* Lists (recap)
* Mutable objects & references

Sequence data types (recap)

* A sequence contains n ≥ 0 values (its length),
each at an index from 0 to n − 1.

* python’s built-in sequence types:
- strings (str) contain only characters;
- lists (list) can contain a mix of value types;
- tuples (tuple) are like lists, but immutable.

* Sequence types provided by other modules:
- e.g., NumPy arrays (numpy.ndarray)

Lists
* python’s list is a general sequence type:

elements in a list can be values of any type.
* List literals are written in square brackets with

comma-separated elements:
>>> a list of ints = [2, -4, 2, -8]
>>> a date = [12, "August", 2015]
>>> pairs = [[0.4, True],

["C", False]]
>>> type(pairs)
<class ’list’>

Creating lists

>>> monday = [18, "July"]
>>> friday = [22, "July"]
>>> [monday, friday]
[[18, "July"], [22, "July"]]
>>> list("abcd")
[’a’, ’b’, ’c’, ’d’]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> [1/x for x in range(1,6)]
[1.0, 0.5, 0.3333333, 0.25, 0.2]

Lists of lists
>>> A = [[1, 2, 3], [4, 5, 6],

[7, 8, 9]]
>>> A[0]
[1, 2, 3]
>>> [1, 2, 3][2]
3
>>> A[0][2]
3

* Indexing and slicing are operators
* Indexing and slicing associate to the left.
a list[i][j] == (a list[i])[j].

Lists of lists

>>> A[0]
[1, 2, 3]
>>> A[0:1]
[[1, 2, 3]]
>>> A[0:1][1:]
[]
>>> A[0:1][1]
IndexError: list index out of range

* Indexing a list returns an element, but slicing a
list returns a list.

Mutable objects and references

Values are objects
* In python, every value is an object.
* Every object has a unique(?) identifier.
>>> id(1)
136608064

(Essentially, its location in memory.)
* Immutable objects never change.
- For example, numbers (int and float) and

strings.
* Mutable objects can change.
- For example, lists and arrays.

Immutable objects
* Operations on immutable objects create new

objects, leaving the original unchanged.
>>> a string = "spam"
>>> id(a string)
3023147264
>>> b string = a string.replace(’p’, ’l’)
>>> b string
’slam’
>>> id(b string)
3022616448
>>> a string
’spam’

n
o
t

t
h
e

s
a
m
e
!

Mutable objects

* A mutable object can be modified yet it’s identity
remains the same.

* Lists and arrays can be modified through:
- element and slice assignment; and
- modifying methods/functions.

* list and ndarray are the only mutable types
we have seen so far but there are many other
(sets, dictionaries, user-defined classes).

Element & slice assignment
>>> a list = [1, 2, 3]
>>> id(a list)
3022622348
>>> b list = a list
>>> a list[2] = 0
>>> b list
[1, 2, 0]
>>> b list[0:2] = [’A’, ’B’]
>>> a list
[’A’, ’B’, 0]
>>> id(b list)
3022622348

t
h
e

s
a
m
e

o
b
j
e
c
t
!

Modifying list methods

* a list.append(new element)

* a list.insert(index, new element)

* a list.pop(index)

- index defaults to -1 (last element).
* a list.extend(an iterable)

* a list.sort()

* a list.reverse()

* Note: Most do not return a value.

Lists contain references

* Assignment associates a (variable) name with a
reference to a value (object).
- The variable still references the same object

(unless reassigned) even if the object is
modified.

* A list contains references to its elements.

* Slicing a list creates a new list, but containing
references to the same objects (“shallow copy”).

* Slice assignment does not copy.

>>> a list = [1,2,3]
>>> b list = a list
>>> a list.append(4)
>>> print(b list)

Image from pythontutor.com

>>> a list = [1,2,3]
>>> b list = a list[:]
>>> a list.append(4)
>>> print(b list)

Image from pythontutor.com

pythontutor.com
pythontutor.com

Image from pythontutor.com

>>> a list = [[1,2], [3,4]]
>>> b list = a list[:]
>>> a list[0].reverse()
>>> b list.reverse()
>>> print(b list)

pythontutor.com

Image from pythontutor.com

>>> a list = [[1,2], [3,4]]
>>> b list = a list[:]
>>> a list[0] = a list[0][::-1]
>>> b list.reverse()
>>> print(b list)

pythontutor.com

Image from pythontutor.com

>>> a list = [1,2,3]
>>> b list = [4,5,6]
>>> a list.append(b list)
>>> c list = a list[:]
>>> b list[0] = ’A’

pythontutor.com

Common mistakes

>>> a list = [3,1,2]
>>> a list = a list.sort()

>>> a list = [1,2,3]
>>> b list = a list
>>> a list.append(b list)

>>> a list = [[]] * 3
>>> a list[0].append(1)

Shallow vs. deep copy
>>> import copy
>>> a list = [[1,2], [3,4]]
>>> id(a list)
3054870700
>>> id(a list[0]), id(a list[1])
(3054874028,3073291596)
>>> b list = a list[:]
>>> id(b list)
3072077420
>>> id(b list[0]), id(b list[1])
(3054874028,3073291596)
>>> c list = copy.deepcopy(a list)
>>> id(c list[0]), id(c list[1])
(3057394764,3057585932)

n
o
t

e
q
u
a
l
!

e
q
u
a
l
!

(Almost) Never use deepcopy!

* Creating 10,000 copies of a list of 1,000 lists of
10 integers.

Time Memory

Shallow copy 0.4s 39.3 MB

Deep copy 305 s 1071 MB

