
COMP1730/COMP6730
Programming for Scientists

Strings



Announcements

* Homework 3 due tonight - 11:55pm Canberra
time.

* Mid-Semester break for the next 2 weeks.
* More details on final examination and

assessment coming.
* Read the Wattle forum.



Lecture outline

* Character encoding & strings
* Indexing, slicing recap
* String methods



Strings

* Strings – values of type str in python – are
used to store and process text.

* A string is a sequence of characters.
- str is a sequence type.

* String literals can be written with
- single quotes, as in 'hello there'
- double quotes, as in "hello there"
- triple quotes, as in '''hello there'''



* Beware of copy–pasting code from slides (and
other PDF files or web pages).



* Quoting characters other than those enclosing a
string can be used inside it:
»> "it's true!"
»> '"To be,"said he, ...'

* Quoting characters of the same kind can be
used inside a string if escaped by backslash (\):
»> 'it\'s true'
»> "it's a \"quote\""

* Escapes are used also for some non-printing
characters:
»> print("\t1m\t38s\n\t12m\t9s")



Character encoding
* Idea: Every character has a number.
* Baudot code

(1870).
* 5-bit code, but

also sequential
(“letter” and
“figure” mode).



Unicode, encoding and font
* Unicode defines numbers (“code points”) for

>120,000 characters (in a space for >1 million).

Encoding
(UTF-8)

Font

Byte(s) Code point Glyph

0100 0101 69
1110 0010
1000 0010
1010 1100 8364



* python 3 uses the unicode character
representation for all strings.

* Functions ord and chr map between the
character and integer representation:
»> ord('A')
»> chr(65 + 4)
»> chr(32)
»> chr(8364)
»> chr(20986)+chr(21475)
»> ord('3')

* See unicode.org/charts/.

unicode.org/charts/


Strings are sequences



Indexing & length (reminder)

Image from Punch & Enbody

* In python, all sequences are indexed from 0.
* ...or from end, starting with -1.
* The index must be an integer.
* The length of a sequence is the number of

elements, not the index of the last element.



* len(sequence) returns sequence length.
* Sequence elements are accessed by placing

the index in square brackets, [].
»> s = "Hello World"
»> s[1]
'e'
»> s[-1]
'd'
»> len(s)
11
»> s[11]
IndexError: string index out of range



Slicing - Recap
* Slicing returns a subsequence:

s[start:end]

- start is the index of the first element in the
subsequence.

- end is the index of the first element after the
end of the subsequence.

* Slicing works on all built-in sequence types
(list, str, tuple) and returns the same type.

* If start or end are left out, they default to the
beginning and end (i.e., after the last element).



* The slice range is “half-open”: start index is
included, end index is one after last included
element.
»> s = "Hello World"
»> s[6:10]
’Worl’

Image from Punch & Enbody



* The end index defaults to the end of the
sequence.
»> s = "Hello World"
»> s[6:]
’World’

Image from Punch & Enbody



* The start index defaults to the beginning of the
sequence.
»> s = "Hello World"
»> s[:5]
’World’

Image from Punch & Enbody



»> s = "Hello World"
»> s[9:1]
''
»> s[-100:5]
'Hello'

* An empty slice (index range) returns an empty
sequence

* Slice indices can go past the start/end of the
sequence without raising an error.



Sequence comparisons

* Two sequences are equal if they have the same
length and equal elements in every position.

* seq1 < seq2 if
- seq1[i] < seq2[i] for some index i and

the elements in each position before i are
equal; or

- seq1 is a prefix of seq2.

* Note: Comparison of NumPy arrays is
element-wise and returns an array of bool.



String comparisons

* Each character corresponds to an integer.
- ord('') == 32
- ord('A') == 65, . . ., ord('Z') == 90
- ord('a') == 97, . . ., ord('z') == 122

* Character comparisons are based on this.

»> "the ANU" < "The anu"
»> "the ANU" < "the anu"
»> "nontrivial" < "non trivial"



String methods



Methods
* Methods are only functions with a slightly

different call syntax:

"Hello World".find("o")

instead of

str.find("Hello World", "o")

* python’s built-in types, like str, have many
useful methods.
- help(str)
- docs.python.org

docs.python.org


Programming problem

* Find a longest repeated substring in a word:
- 'backpack' → 'ack'
- 'singing' → 'ing'
- 'independent' → 'nde'
- 'philosophically' → 'phi'
- 'monotone' → 'on'
- 'wherever' → 'er'
- 'repeated' → 'e'
- 'programming' → 'r' (or 'g', 'm')
- 'problem' → ''


