COMP1730/COMP6730

Programming for Scientists

Software Design.

—| Australian

lational

Announcements

*» Major Assignment Released (Materials on
Wattle).

Group Sign-up open on Wattle until Friday.
Assignment due 9:00am Monday 24 May.
Please follow the submission instructions.
Please have a look at the marking rubric.

Overview

Disclaimer

Development Methodologies
Design Principles

Design Patterns

Standards and Conventions

* * F *

—| Australian

lational

Disclaimer

*» Software Development is a huge topic.

* You could take a degree in Software
Engineering at ANU.

* This lecture isn’t going to cover everything, or
even most things.

* |f you are interested, look at COMP2100 or
COMP2120 for more information.

Why Good Design is Important

* Y2K problem
- Design failure: software using two digits for
years (e.g., 99 for 1999)
- Estimated US$500 billion worldwide to fix
* Knight Capital Flash Crash
- Poorly designed (and tested) code switched
buying and selling in stock market
- Company lost $440 million in about 30 minutes

From Idea to Implementation

1.

Cool Idea - High Level Vision

2. Who? What? How? - People, things and

@

interactions
Entities, Structures and Processes - Modeling

Types, Classes, Functions - Defining the code
structure

Code - Implementation

Two Development Methodologies
*» Waterfall Method
- Development proceeds in strict sequence:
- Requirements gathering - Design -
Implementation - Verification - Maintenance
- Introduced as a non-working model
- Useful for comparison; still used
*» Agile Methodologies
- Many variants (e.g., eXtreme Programming,
Scrum) with similar philosophy
- Design as an iterative process
- Adaptive planning, early delivery, continuous
improvement

Design and Development
* User cases and user stories

- Requirements captured as short stories about
how certain features or services might be used

- Useful for making sure stakeholders and
developers agree

* Test/Behaviour Driven Development

- Required functionality specified through unit
tests and other forms of automated testing

- Tools exist for systematically turning high-level
behavioural specification into executable tests
(e.g., Python behave!)

Design and Development

*» Release early, release often

— Get a minimum viable product working as
early as possible.

— Get the product into the hands of the users
and then refine.

- A project that is incomplete may still deliver
something useful.

* Failing fast and continuous development

- The earlier you can detect problems the better.
- Continuous automated testing and user
feedback will help detect problems quickly.

Some Design Principles
* Keep it Simple
- Make everything as simple as possible, but no
simpler
- Keep breaking the problem down until it can
be explained in a sentence or two.
*» Separation of Concerns (Modularity)
- Reasoning about multiple interactions is
difficult
- Organise your project so you can focus on
solving one aspect at a time.
- Having clearly defined interfaces helps.

More Design Principles

* Principle of least surprise
— Design functions, etc. so that naming,
behaviour, arguments, etc. are consistent
— Stick with familiar conventions

*» Don’t repeat yourself
- Every piece of knowledge must have a single,
unambiguous, authoritative representation.
* You ain’t gonna need it

- Only implement things when you need them,
since requirements may (will) change
frequently.

Design Patterns

* A 'template’ solution to a common problem
* Examples
- Adaptor Pattern
- Observer Pattern
- Factory Pattern
- Command Pattern
*» Many more - see:
en.wikipedia.org/wiki/Software_design_pattern

https://en.wikipedia.org/wiki/Software_design_pattern

—| Australian

lational

Standard and Conventions

* “The good thing about standards is that there
are so many of them to choose from”— Grace
Hopper

* Take home message: It doesn’t matter which
standard you choose as long as you choose,
and stick to, one.

Why Use Standards?

* * * *

Help improve readability and maintenance of
software

Allow the creation of tools to aid in development
Eliminate the need to make decisions
Lowers the barrier of entry

We have already seen and been using a
number of standards in the guise of good
programming practice

Australian
» National

niversity

Naming Conventions

*» Python restricts names to letters, numbers and
underscores, and must start with a letter or
underscore - the rest is up to the programmer.

- RADIUS_OF_EARTH - constants

- MyCoolClass - class names

- sum_1if_negative - function and variable
names

- _my_secret_business - private members

—| Australian

lational

Code Layout and Organisation

Indentation - tabs or spaces and how many

Maximum line length - used to be 80 characters
- now more commonly 120.

* How much goes in a file - often a single class
per file

* Wrap scriptsin if _ _name_ ==
' main__ '

*

*

Documentation Conventions

*» Use docstrings for functions and classes.

* Keep a consistent style - several different ways
to specify parameters and return types, etc.

*» Use comments where appropriate but keep
them up-to-date and don’t overdo. Well written
code needs surprisingly few comments.

Testing Conventions

*

Use libraries such as unittest or pytest
Have one test for each function or class being
tested

Name tests based on what functionality is being
tested

*» Do not mix test and production code

*

*

» Many Python coding conventions are described
in PEP (Python Enhancement Proposal) 0008
— Style Guide for Python Code based on the
insight that code is read more often that it is
written
https://www.python.org/dev/peps/pep-0008/

*» Not everyone will like all the conventions used in
any given project, but the benefit of consistency
that standards bring to a project will outweigh
the individual tastes of a single team member

https://www.python.org/dev/peps/pep-0008/

