
COMP1730/COMP6730
Programming for Scientists

Software Design.

Announcements

* Major Assignment Released (Materials on
Wattle).

* Group Sign-up open on Wattle until Friday.
* Assignment due 9:00am Monday 24 May.
* Please follow the submission instructions.
* Please have a look at the marking rubric.

Overview

* Disclaimer
* Development Methodologies
* Design Principles
* Design Patterns
* Standards and Conventions

Disclaimer

* Software Development is a huge topic.
* You could take a degree in Software

Engineering at ANU.
* This lecture isn’t going to cover everything, or

even most things.
* If you are interested, look at COMP2100 or

COMP2120 for more information.

Why Good Design is Important

* Y2K problem
- Design failure: software using two digits for

years (e.g., 99 for 1999)
- Estimated US$500 billion worldwide to fix

* Knight Capital Flash Crash
- Poorly designed (and tested) code switched

buying and selling in stock market
- Company lost $440 million in about 30 minutes

From Idea to Implementation

1. Cool Idea - High Level Vision
2. Who? What? How? - People, things and

interactions
3. Entities, Structures and Processes - Modeling
4. Types, Classes, Functions - Defining the code

structure
5. Code - Implementation

Two Development Methodologies
* Waterfall Method
- Development proceeds in strict sequence:
- Requirements gathering - Design -

Implementation - Verification - Maintenance
- Introduced as a non-working model
- Useful for comparison; still used

* Agile Methodologies
- Many variants (e.g., eXtreme Programming,

Scrum) with similar philosophy
- Design as an iterative process
- Adaptive planning, early delivery, continuous

improvement

Design and Development
* User cases and user stories
- Requirements captured as short stories about

how certain features or services might be used
- Useful for making sure stakeholders and

developers agree
* Test/Behaviour Driven Development
- Required functionality specified through unit

tests and other forms of automated testing
- Tools exist for systematically turning high-level

behavioural specification into executable tests
(e.g., Python behave!)

Design and Development
* Release early, release often
- Get a minimum viable product working as

early as possible.
- Get the product into the hands of the users

and then refine.
- A project that is incomplete may still deliver

something useful.
* Failing fast and continuous development
- The earlier you can detect problems the better.
- Continuous automated testing and user

feedback will help detect problems quickly.

Some Design Principles
* Keep it Simple
- Make everything as simple as possible, but no

simpler
- Keep breaking the problem down until it can

be explained in a sentence or two.
* Separation of Concerns (Modularity)
- Reasoning about multiple interactions is

difficult
- Organise your project so you can focus on

solving one aspect at a time.
- Having clearly defined interfaces helps.

More Design Principles
* Principle of least surprise
- Design functions, etc. so that naming,

behaviour, arguments, etc. are consistent
- Stick with familiar conventions

* Don’t repeat yourself
- Every piece of knowledge must have a single,

unambiguous, authoritative representation.
* You ain’t gonna need it
- Only implement things when you need them,

since requirements may (will) change
frequently.

Design Patterns

* A ’template’ solution to a common problem
* Examples
- Adaptor Pattern
- Observer Pattern
- Factory Pattern
- Command Pattern

* Many more - see:
en.wikipedia.org/wiki/Software_design_pattern

https://en.wikipedia.org/wiki/Software_design_pattern

Standard and Conventions

* “The good thing about standards is that there
are so many of them to choose from”— Grace
Hopper

* Take home message: It doesn’t matter which
standard you choose as long as you choose,
and stick to, one.

Why Use Standards?

* Help improve readability and maintenance of
software

* Allow the creation of tools to aid in development
* Eliminate the need to make decisions
* Lowers the barrier of entry
* We have already seen and been using a

number of standards in the guise of good
programming practice

Naming Conventions

* Python restricts names to letters, numbers and
underscores, and must start with a letter or
underscore - the rest is up to the programmer.
- RADIUS_OF_EARTH - constants
- MyCoolClass - class names
- sum_if_negative - function and variable

names
- _my_secret_business - private members

Code Layout and Organisation

* Indentation - tabs or spaces and how many
* Maximum line length - used to be 80 characters

- now more commonly 120.
* How much goes in a file - often a single class

per file
* Wrap scripts in if __name__ ==
'__main__'

Documentation Conventions

* Use docstrings for functions and classes.
* Keep a consistent style - several different ways

to specify parameters and return types, etc.
* Use comments where appropriate but keep

them up-to-date and don’t overdo. Well written
code needs surprisingly few comments.

Testing Conventions

* Use libraries such as unittest or pytest
* Have one test for each function or class being

tested
* Name tests based on what functionality is being

tested
* Do not mix test and production code

* Many Python coding conventions are described
in PEP (Python Enhancement Proposal) 0008
— Style Guide for Python Code based on the
insight that code is read more often that it is
written
https://www.python.org/dev/peps/pep-0008/

* Not everyone will like all the conventions used in
any given project, but the benefit of consistency
that standards bring to a project will outweigh
the individual tastes of a single team member

https://www.python.org/dev/peps/pep-0008/

