

COMP1730/COMP6730 Programming for Scientists

Floating point numbers

Announcements

- * Read the announcements forum!
 - I'll be posting about resources, quizzes and other material during the week.
- Homework 3 is being marked in the labs this week.
- Homework 4 will be released today due in Week 8
- Friday 2 April is a public holiday so there won't be catch-up labs this week.

Outline

- * Numbers in binary and other bases
- * Floating point numbers

How do we represent numbers?

- * A sequential encoding system represents each item (words, numbers, etc) by a sequence of symbols; the order (position) of a symbol in the sequence carries meaning, as much as the symbol itself.
- * For example,
 - representation ≠ interpret as one
 - 'stream' ≠ 'master'
 - $-007 \neq 700$

Positional number system

- * The position of a digit is the power of the *base* that it adds to the number.
- * For example, in base 10:

```
1864
```

- = 1 thousand 8 hundreds 6 tens 4 ones
- $= 1 \times 10^3 + 8 \times 10^2 + 6 \times 10^1 + 4 \times 10^0$
- * The position of the least significant digit is 0. $(b^0 = 1 \text{ for any base } b.)$
- * The representation of any (non-negative integer) number is unique, except for leading zeros.

This extends to negative powers

- Negative bases represent fractional numbers
- ⋆ For example, again in base 10:

```
32.45
= 3 tens 2 ones 4 tenths 5 hundredths
= 3 \times 10^{1} + 2 \times 10^{0} + 4 \times 10^{-1} + 5 \times 10^{-2}
```

* This representation is also unique, excepting leading and trailing zeros.

We can count in any base

* For example, in base 3:

$$2120001_{3}$$
= 2×3^{6}
+ $1 \times 3^{5} + 2 \times 3^{4} + 0 \times 3^{3}$
+ $0 \times 3^{2} + 0 \times 3^{1} + 1 \times 3^{0}$
= $2 \times 729 + 243 + 2 \times 81 + 1$
= 1864

- * Each digit is one of $0, \ldots, b-1$.
- * ("nnnn_b" means a number in base b.)

 Ancient Babylonians (ca 2,000 BC) counted in base 60.

$$44.7 \text{ } 77$$

$$= 31 \times 60^{1} + 4 \times 60^{0}$$

$$= 1864$$

```
45€ 7 51
        4(77 22
                          45.77 42
                                    ₹₹ 77 52
                (((7)7 33
                          45 777 43
4777 13
        4(777 23
                                    15 177 53
        ₹₹24
                4407 34
                          45 67 44
                                    15 5 4
₹27 14
        ∜₩ 25
                ## 35
                          15 07 45
                                    10 37 55
₹₩ 15
                ₩₩ 36
       4488 26
                          ₹ $$$ 46
                                    12 ₩ 56
                          45 ₩ 47
₹ 17
       ∜⊞ 27
                ### 37
                                    ₹% 27 57
                ₩₩ 38
                          48 48
        ∜⊞ 28
                                    ₹$# 58
                                    ₹ 59
4₩ 19
       44 2 29
                ## 39
                          ₹ 49
44 20
```

★ However, they did not have a symbol for 0: can mean 1, 60, 3600, 1/60, etc.

Binary numbers

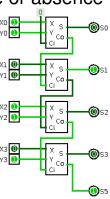
Binary numbers are simply numbers in base 2.

$$111010010002$$
= 1×2^{10}
 $+ 1 \times 2^{9} + 1 \times 2^{8} + 0 \times 2^{7} + 1 \times 2^{6} + 0 \times 2^{5}$
 $+ 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$
= $1024 + 512 + 256 + 64 + 8$
= 1864

Bits and bytes

* In the electronic computer, a single binary digit (bit) is represented by the presence or absence of current in a circuit element.

- * 8 bits make an octet, or byte.
- Digital hardware works with fixed-width number representations ("words").
- Common word sizes: 32-bit, 64-bit.



Arithmetic

 Long (multi-digit) addition, subtraction, multiplication, division and comparison (of non-negative numbers) work the same way in any base.

$0_2 + 0_2 = 0_2$
$0_2 + 1_2 = 1_2$
$1_2 + 0_2 = 1_2$
$1_2 + 1_2 = 10_2$

111
01012
$+0111_{2}$
11002

	1001 ₂
×	1012
	10012
	00000_{2}
	100100

1011012

Floating point numbers

Representing fractional numbers

* Extend the number system to negative powers of the base; decimal point marks position zero.

$$\begin{array}{l} 0.25_{10} \\ = 0 \times 10^{0} + 2 \times 10^{-1} + 5 \times 10^{-2} \\ = 0 \times 1 + 2 \times \frac{1}{10} + 5 \times \frac{1}{100} \\ 0.01_{2} \\ = 0 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} \\ = 0 \times 1 + 0 \times \frac{1}{2} + 1 \times \frac{1}{4} \\ = 0.25_{10} \end{array}$$

But there's a problem

- Not every fraction has a finite decimal expansion in a given base.
- * For example,
 - $\frac{1}{3} = 0.3333...$ in base 10
 - $\frac{1}{5} = 0.001100110011...$ in base 2
 - $\frac{1}{3} = 0.1$ in base 3.
- * We can't use infinitely many digits to represent a number so decimal representations of fractions have finite precision.

Floating point representation

⋆ A floating point number in base b,

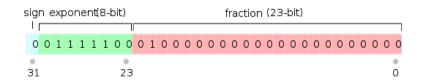
$$x = \pm m \times b^e$$

consists of three components:

- the sign (+ or -);
- the significand (m);
- the exponent (e);
- * The number is *normalised* iff 1 < m < b.

 Compact (small) representation of numbers far from the decimal point.

- Floating point types, as implemented in computers, use *fixed-width* binary integer representation of the significand and exponent.
- * In a normalised binary number the first digit is 1, so only the fraction is represented (m = 1.f).
- ★ The exponent is biased by a negative constant.
- * IEEE standard formats:
 - single: 23-bit fraction, 8-bit exponent.
 - double: 52-bit fraction, 11-bit exponent.
- * Standard also specifies how to represent 0, $+\infty$, $-\infty$ and nan ("not a number").



$$x = (-1)^{s} (1.f)_{2} 2^{(e-127)}$$

$$= (-1)^{0} (1.01)_{2} 2^{01111100_{2}-127}$$

$$= (1+1\cdot 2^{-2}) 2^{(64+32+16+8+4)-127}$$

$$= (1.25)2^{-3} = (1.25)/8 = 0.15625$$

(Image from wikipedia.org)

* Type float can represent infinity:

```
>>> 1 / 1e-320 inf
```

- ★ Most math functions raise an error rather than return inf.
 - For example, 1 / 0, or math.log(0).
- nan ("not a number") is a special value used to indicate errors or undefined results.

```
>>> (1 / 1e-320) - (1 / 1e-320) nan
```

* math.isinf and math.isnan functions.

Floating point number systems

- ★ A floating point number system (b, p, L, U) is defined by four parameters:
 - the base (b);
 - the precision: number of digits in the fraction of the significand (p); and
 - the lower (L) and upper (U) limit of the exponent.
- ★ IEEE double-precision is (2,52, -1023, 1024) (with some tweaks).

- The numbers that can be represented (exactly) in a floating point number system are not evenly distributed on the real line.
- * E.g., (2, 2, -2, 1): $\frac{1}{0}$
- ★ E.g., in a (2,52, -1023, 1024) system,
 - the smallest number > 0 is $2^{-1023} \approx 10^{-308}$,
 - (Actual IEEE double standard can represent numbers down to $\approx 4 \cdot 10^{-324}$.)
 - the smallest number > 1 is $1 + 2^{-52}$ $\approx 1 + 2 \cdot 10^{-16}$.
- * Rounding the significand to p + 1 digits causes a discrepancy, called the rounding error.

 Because of rounding, mathematical laws do not always hold for floating point arithmetic.

```
>>> a = 111111113.0

>>> b = -111111111.0

>>> c = 7.51111111

>>> (a + b) + c == a + (b + c)

False

>>> ((a + b) + c) - (a + (b + c))

4.488374116817795e-10
```

Example from Punch & Enbody

* (Almost) never compare floats with ==.