COMP1730/COMP6730
Programming for Scientists

Floating point numbers

—| Australian

lational

Announcements

* Read the announcements forum!
- I'll be posting about resources, quizzes and
other material during the week.
* Homework 3 is being marked in the labs this
week.
» Homework 4 will be released today - due in
Week 8

* Friday 2 April is a public holiday so there won't
be catch-up labs this week.

Outline

* Numbers in binary and other bases
* Floating point numbers

How do we represent humbers?

* A sequential encoding system represents each
item (words, numbers, etc) by a sequence of
symbols; the order (position) of a symbol in the
sequence carries meaning, as much as the
symbol itself.

* For example,
— representation # interpret as one
- ‘stream’ # ‘master’
- 007 # 700

Positional humber system

* The position of a digit is the power of the base
that it adds to the number.

*» For example, in base 10:

1864
= 1 thousand 8 hundreds 6 tens 4 ones
=1x10° +8x102 +6x10" +4x100

* The position of the least significant digit is O.
(b° = 1 for any base b.)

* The representation of any (non-negative integer)
number is unique, except for leading zeros.

—| Australian

lational

This extends to negative powers

*» Negative bases represent fractional numbers
*» For example, again in base 10:
32.45

= 3 tens 2 ones 4 tenths 5 hundredths
=3x10" +2x10° + 4x10' + 5x10°2

* This representation is also unique, excepting
leading and trailing zeros.

We can count in any base
* For example, in base 3:

21200015
= 2x236
+1x35+2x3*4+0x38
+0x3%2+0x3"4+1x30
=2x 729+243 +2 x 81 + 1
= 1864

*» Each digitisone of 0,....b—1.
* (“nnnny” means a number in base b.)

stralian

* AnCient Babylonians 71 F 11 (r 21 K 31 gy a1 <&y 5

w2 4y 12 Ly 22 P 32 ny 42 (Q(yy 52

(Ca 2,000 BC) w3 M 13 M 23 T 33 <R 43 KT 3
counted in base 60. e e e
Y We MWie W2 «Fs €W %m 56

T T T ¥ <¥« &F 57

« w Hs Wis W W Fe T

—_ 1 0 Fo W Fo €Fe CFo <F-
- 31 >< 60 + 4 >< 60 {10 « 20 & 30 (Q' 40 fﬁ 50
= 1864

+ However, they did not have a symbol for 0: ¥
can mean 1, 60, 3600, 1/eo, etc.

Binary humbers

*= Binary numbers are simply numbers in base 2.

11101001000,
= 1x210
+1x22°4+1x28240x2"+1x284+0x2°
+0x2%+1x224+40x224+0x2"+0x20
1024 + 512 + 256 + 64 + 8
1864

Bits and bytes

* In the electronic computer, a single binary digit
(bit) is represented by the presence or absence

of current in a circuit element. A] B

* 8 bits make an octet, or byte. 1o]

+ Digital hardware works with o J_@
fixed-width number T
representations (“words”). e J

* g:rkr)l.;non word sizes: 32-bit, < e~

Arithmetic

*» Long (multi-digit) addition, subtraction,
multiplication, division and comparison (of
non-negative numbers) work the same way in

any base.

02+ 0o =0
02 +12=15
1o+ 0.=1>
1 +1-=10

111

01015 1001,
+0111, X 101,
11002 1001,
000002

1001002

101101,

Australian
Natlonal

3 University

Floating point numbers

—| Australian

lational

Representing fractional numbers

*» Extend the number system to negative powers
of the base; decimal point marks position zero.

0.25¢
=0x10°+2x10""+5x 1072
=0x1+2x1/104+5 x 1/100

0.01,
=0x2°4+0x2 1 41x272
=0x1+0x12+1x1/4
= 0.25¢¢

But there’s a problem

*» Not every fraction has a finite decimal
expansion in a given base.

* For example,
- 1/3=0.3333...in base 10
- 1/5=0.001100110011 ... in base 2
- 1/3=10.1in base 3.

*» We can’t use infinitely many digits to represent a
number so decimal representations of fractions
have finite precision.

Floating point representation

* A floating point number in base b,
X ==+mx b

consists of three components:
- the sign (+ or —);

- the significand (m);

- the exponent (e);

* The number is normalised iff 1 < m < b.

» Compact (small) representation of numbers far
from the decimal point.

—x9
- 1.08 x 10° = 1080000000 .0

—x7

—
- 6.44 x 10~7 = 0.0000006 44
- 1.0000001, x 2111102 —

—x30

1000000100000000000000000000000;

* Floating point types, as implemented in
computers, use fixed-width binary integer
representation of the significand and exponent.

* |n a normalised binary number the first digit is 1,
so only the fraction is represented (m = 1.f).
* The exponent is biased by a negative constant.
*» |EEE standard formats:
- single: 23-bit fraction, 8-bit exponent.
- double: 52-bit fraction, 11-bit exponent.

*» Standard also specifies how to represent 0,
+00, —oo and nan (“not a number”).

Australian
National

University

sign exponent8-bit) fraction (23-bit)
I I |
00111110001 0000000000000000000O0CO0

31 23 0

x=(=1)5(1. f) ple-127)
:(1)0() 2011111002 127
— (1 _|_1) 64+32—|—16+8+4) 127
= (1 .25) — (1.25)/8 = 0.15625

(Image from wikipedia.org)

wikipedia.org

Australian
National

: University

* Type float can represent infinity:
>>> 1 / 1e-320
inf

* Most math functions raise an error rather than
return inf.

- Forexample, 1 / 0,0ormath.log(0).

* nan (“not a number”) is a special value used to
indicate errors or undefined results.
>>> (1 / 1e-320) - (1 / 1le-320)
nan

* math.isinf and math.isnan functions.

Floating point humber systems

* A floating point number system (b, p, L, U) is
defined by four parameters:
- the base (b);
- the precision: number of digits in the fraction
of the significand (p); and
- the lower (L) and upper (U) limit of the
exponent.

x |EEE double-precision is (2,52, —1023, 1024)
(with some tweaks).

* The numbers that can be represented (exactly)
in a floating point number system are not evenly
distributed on the real line.

IIIIIlIIlI | 1]

* Eg.(22,-2,1) bl : :

* E.g.,ina(2,52,—-1023, 1024) system,
- the smallest number > 0 is 271023 10308,
- (Actual IEEE double standard can represent
numbers down to ~ 4 - 107324))
- the smallest number > 1 is 1 4 2752
~1+2-10716,
* Rounding the significand to p + 1 digits causes
a discrepancy, called the rounding error.

Australian
National

: University

*» Because of rounding, mathematical laws do not
always hold for floating point arithmetic.

>>> a = 11111113.0

>>> b = -11111111.0

>>> ¢ = 7.51111111

>>> (a + b) + ¢ ==a+ (b + c)
False

>>> ((a + b) + ¢c) - (a + (b + ¢))

4.488374116817795e-10
Example from Punch & Enbody

* (Almost) never compare floats with ==.

