COMP1730/COMP6730

Programming for Scientists

Functions

Announcements

*x Late enrolees: Read the news forum on wattle
— including the announcements from last week.

» Homework 1 is due 9:00am Monday the 15th
of March.

* Homework 1 will be assessed in lab that week
(Week 4)
— you must attend your lab session.

Announcements (cont.)

» Catch-up labs on Friday, 11:00am - 1:00pm and
1:00pm - 3:00pm, Run online and in HN1.23.

*» Student Course Representative applications,
Please submit ASAP, and send to
comp1730@anu.edu.au as well.

Application process and information is on the
course website.

Lecture outline

Homework 1 demo.

Function definition.

Function calls & order of evaluation.
Assignments in functions; local variables.
Function testing & documentation.

* * * * *

Functions

* |n programming, a function is a piece of the
program that is given a name, and can be called
by that name.

* Functions definitions promote abstraction
(“what, not how”) and help break a complex
problem into smaller parts.

*= To encapsulate computations on data, functions
have parameters and a return value.

Function definition (reminder)

name

def change_in_percent (old, new) :
s:ces iff = new - old }suite
P lreturn (diff / old) * 100

* A function definition consists of a name and a
suite.

*» The extent of the suite is defined by indentation,
which must be the same for all statements in the
suite (standard is 4 spaces or 1 tab).

University

Function definition

parameters

def change_in percent (old, new):
diff = new - old
return (diff / old) = 100

*» Function parameters are (variable) names; they
can be used (only) in the function suite.

*» Parameters’ values will be set only when the
function is called.

* return is a statement: when executed, it
causes the function call to end, and return the
value of the expression.

University

Function call

* To call a function, write its name followed by its
arguments in parentheses:

>>> change_in percent (499, 435)
14.71...

* The arguments are expressions.
* Their number should match the parameters.
- Some exceptions; more about this later.

* A function call is an expression: its value is the
value returned by the function.

Order of evaluation

* The python interpreter always executes
instructions one at a time in sequence; this
includes expression evaluation.

* 0 evaluate a function call, the interpreter:

- First, evaluates the argument expressions,
one at a time, from left to right.

- Then, executes the function suite with its
parameters assigned the values returned by
the argument expressions.

*» Same with operators: first arguments (left to
right), then the operation.

The call stack

*» When evaluation of a function call begins, the
current instruction sequence is put “on hold”
while the expression is evaluated.

* When execution of the function suite ends, the
interpreter returns to the next instruction after
where the function was called.

* The “to-do list” i.e. where to come back to after
each function call ends, is called the stack.

Australian
lational

import math

Convert degrees to radians.
def deg_to._rad(x):
return x * math.pi / 180

Take sin of an angle in degrees.
def sin_of_deg(x) :

x_in.rad = deg_to_rad(x)

return math.sin(x_in_rad)

ans = sin_of_deg(23)

Australian
National

University

import math
def deg_to_rad(x) :

def sin-of_deg (x):

ans=sin_of_deg (23

5 x_in_rad=deg.to.rad (23)

7 x.in_rad=0.4014
8 return math.sin (0.4014)
ans = 0.3907

‘6 return 23*math.pi/180

stack depth

Assignments in functions

* Variables assigned in a function (including

parameters) are local to the function.

- Local variables are “separate” — the interpreter
uses a new namespace for each function call.

- Local variables that are not parameters are
undefined before the first assignment in the
function suite.

- Variables with the same name used outside
the function are unchanged after the call.

* The full story is a little more complicated — we'll
return to it later in the course.

Functions with no return

* |f execution of a function suite reaches the end
of the suite without encountering a return
statement, the function call returns the special
value None.

— None is used to indicate “no value”.
- The type of None is NoneType (different from
any other value).

* In interactive mode, the interpreter does not
print the return value of an expression when the
value is None.

Side effects and return values

* An expression evaluates to a value.

* A statement does not return a value, but
executing it causes something to happen, e.g.,
- a_number = 2 + 3 :variable a_number

becomes associated with the value 5;

- print (2 + 3) :the value 5 is printed.
This is called a side effect.

* We can write functions with or without side

effects, and functions that do or don’t return a
value (other than None).

Australian
lational

5 University

* Functions with side effects and no return value:
— robot.drive_right ()
- print (...)

* Functions with return value and no side effect:
- math.sin (x)
— change_in_percent (old, new)

* Functions with side effects and return value?
- Possible.

* Functions with no side effect and no return
value?

Testing and Documentation

Function testing

* A function is a logical unit of testing.

- Specify the assumptions (for example, type
and range of argument values);

- Test a variety of cases under the assumptions.

» What are “edge cases”?

- Typical (numeric) examples: values equal
to/less than/greater than zero; very large and
very small values; values of equal and
opposite signs; etc.

* Remember that floating-point numbers have
limited precision; == can fail.

Australian
lational

>>> change_in percent (1, 2)
100.0

>>> change_in percent (2, 1)
-50.0

>>> change_in percent (1, 1)
0.0

>>> change_in percent (1, -1)
-200.0

>>> change_in percent (0, 1)
ZeroDivisionError

| Australi
|;__;| Sic;;aﬁm

The function docstring

def change_in_percent (old, new):
"7T"Return change from old to new, as
a percentage of the old value.
old value must be non-zero.’’’
return ((new - old) / old) % 100

*x A docstring is a string literal written as the first
statement inside a function’s suite.

* Acts like a comment, but accessible through the
built-in help system.

*» Describe what the function does (if not obvious
from its name), and its limits and assumptions.

