COMP1730/COMP6730

Programming for Scientists

Functions, part 2

Announcements

* Homework 4 is due at 9:00am next Monday
* Homework 4 marking in the labs next week.

* |f you want to change lab groups next week, the
deadline to do so is 12:00pm Monday.

Lecture outline

*» Recap of functions.
» Namespaces & references.

Functions (recap)

* A function is a piece of code that can be called
by its name.
* Why use functions?
- Abstraction: To use a function, we only need
to know what it does, not how.
- Readability.
- Divide and conquer — break a complex
problem into simpler problems.
- A function is a logical unit of testing.
- Reuse: Write once, use many times (and by
many).

Australian
National

University

Function definition

name parameters

def change_in percent (old, new):
S:Ces iff = new - old
P lreturn (diff / old) * 100

suite

*= The function suite is defined by indentation.

*» Function parameters are variables local to the
function suite; their values are set when the
function is called.

* The def statement only defines the function
— it does not execute the function.

Australian
National

University

Function call

* o call a function, write its name followed by its
arguments in parentheses:

change_in percent (435, 499)

» Order of evaluation: The argument expressions
are evaluated left-to-right, and their values are
assigned to the parameters; then the function
suite is executed.

* return expression causes the function call
to end, and return the value of the expression.

Functions without return

* A function call is an expression: its value is the
value return’d by the function.

* |n python, functions always return a value: If
execution reaches the end of a function suite
without executing a return statement, the
return value is the special value None of type
NoneType.

* Note: None-values are not printed in the
interactive shell (unless explicitly with print).

stralian
National

University

Namespaces

|;_;| Ausitéﬁgﬁm

Namespaces

* Assignment associates a (variable) name with a
reference to a value.
— This association is stored in a namespace
(sometimes also called a “frame”).

* Whenever a function is called, a new /local
namespace is created.

* Assignments to variables (including parameters)
during execution of the function are done in the
local namespace.

* The local namespace disappears when the
function call ends.

* The scope of a variable is “the set of program
statements over which a variable exists (i.e., can
be referred to)”.

- In other words, the set of program statements
over which the namespace that the variable is
defined in persists.

*» Because there are several namespaces, there
can be different variables with the same name in
different scopes.

Australizl-m
al

def

f(x):

y = X *xx 2
return y -
1

f(x + 1)

1

Frames Objects

function

f(x)

Global frame

f
x |1

x |2
y 4

Return
3
value

Image from pythontutor.com

pythontutor.com

Australian
ional

def

f(x):

Yy = X %% 2
return y -
1

f(x + 1)

1

Frames Objects
Global frame function
f(x)
f
x 1
y 3

Image based on pythontutor.com

pythontutor.com

The local assignment rule

* python considers a variable that is assigned
anywhere in the function suite to be a “/ocal
variable” (this includes parameters).

* When a non-local variable is evaluated, its value
is taken from the (enclosing) global namespace.

» When a local variable is evaluated, only the
local namespace is checked.

- If the variable is not defined there, python
raises an UnboundLocalError.

* The rule considers only variable assignment.

Australian
ational

5 University

def f(x):
return x ** y
>>> y = 2
>>> £ (2)
4

def f(x):
if y < 1:
y =1
return x ** y
>>> vy = 2
>>> £ (2)
UnboundLocalError:
local variable 'y’
referenced before
assignment

| Australian
|—"“"‘-‘—“| ional

* Modifying is not assignment!

- Assignment changes/creates the association
between a name and a reference (in the
current namespace).

- A modifying operation on a mutable object —
including index and slice assignment — does
not change any name—value association.

Australian
National

: University

def f£(x):
Yy = X %% 2
f list.append([x,Vv])
return y

>>> f list = []
>>> £ (2)

>>> £ (3)

>>> f list
(2, 41, (3, 911

tiona
University

Argument values are references

* When a function is called, its parameters are
assigned references to the argument values.

- If an argument value refers to a mutable object
(for example, a list), modifications to this
object made in the function are visible outside
the function’s scope.

Australian
ational

5 University

def f(ns):

total = 0
while len(ns) > O:
next = ns.pop(0)

total = total + next
return total

>>> a_list = [1,2,3]
>>> f (a_list)

>>> g_list

Australian
National

University

Frames Objects
Global frame function
f(ns)
f
a_list list
0 |1 |2
1(2]3
£
def f (ns):
total = 0 ns
while len(ns) > (: total |0

next = ns.pop(0)
total = total + next
return total

Image from pythontutor.com

>>> a_list = [1,2,3]
>>>] sum = f(a_list)

pythontutor.com

Other namespaces

* python’s built-in functions are defined in a
separate namespace.

* Imported modules are executed in their own
namespace.
- Names in a module namespace are accessed

by prefixing the name of the module.

*» User-defined classes and objects (not covered

in this course) also have their own namespace

* Assignments (and defs) made outside a
function call are stored in the global namespace.

Searching for variables
*» When evaluating a variable python checks
namespaces in a specific order LEGB.
- Local - python checks in the local namespace
(i.e. within the function definition).
- Enclosing - within a class definition or an
enclosing function definition.
— Global - within the global namespace.
- Built-ins - anything built into python.
* Python uses the first version of the variable it
finds.
* |f none of the namespaces contain the variable,
python raises a NameError.

Why have namespaces?

*

Why have namespaces at all, why not just have
everything global?

Namespaces are about organisation and access
control.

Like most aspects of code quality, they become
more important the larger the project.

Place limitations on the life of a variable and
where it can be changed.

If anyone can modify any variable from
anywhere in the project, and your project
contains 2 million lines of code, how can you tell
where (and why) a value was changed?

Guidelines for good functions

» Within a function, access only local variables.
- Use parameters for all inputs to the function.
- Return all function outputs (for multiple
outputs, return a tuple or list).
- ...except if the specific purpose of the function
is to send output elsewhere (e.g., print).

*» Don’t modify mutable argument values, unless
the specific purpose of the function is to do that.

* Rule #4: No rule should be followed off a cliff.

