
COMP1730/COMP6730
Programming for Scientists

Functions, part 3



Announcements

* Major assignment due on Monday - 9:00am.
* If you haven’t got something submitted yet,

please do so ASAP. You can always update it.
* Practice Examination will be available soon
* Exam revision in the labs next week.



Lecture outline

* Recap of functions.
* Keyword arguments and parameter defaults.
* The function type in Python.
* Recursion



Functions (recap)
* A function is a piece of code that can be called

by its name.
* Why use functions?
- Abstraction: To use a function, we only need

to know what it does, not how.
- Readability.
- Divide and conquer – break a complex

problem into simpler problems.
- A function is a logical unit of testing.
- Reuse: Write once, use many times (and by

many).



Function definition

def change in percent(old, new):
diff = new - old
return (diff / old) * 100

name parameters

suite
4

spaces

* The function suite is defined by indentation.
* Function parameters are variables local to the

function suite; their values are set when the
function is called.

* The def statement only defines the function
– it does not execute the function.



Function call

* To call a function, write its name followed by its
arguments in parentheses:

change in percent(485, 523)

* Order of evaluation: The argument expressions
are evaluated left-to-right, and their values are
assigned to the parameters; then the function
suite is executed.

* return expression causes the function call
to end, and return the value of the expression.



Positional and keyword arguments

* By default, function call arguments are mapped
to parameters by position (left-to-right).

* python also allows named (a.k.a. keyword)
arguments (and a mix of both).

def log(x, b):
...

>>> log(3, 2) # x = 3, b = 2
>>> log(3, b=2) # x = 3, b = 2
>>> log(b=2, x=3) # x = 3, b = 2



Parameter default values

* python allows function definitions to specify
parameter default values.

* Parameters without a default value are required,
and must precede all parameters with defaults.

def log(x, b = 2):
...

>>> log(3) # x = 3, b = 2
>>> log(3, 10) # x = 3, b = 10
>>> log(b=3, x=3) # x = 3, b = 3



Why Use default and keyword
parameters?
* Allows you to change a function signature

without breaking existing code.
* Allows you to have more complex function

signatures without making the user specify lots
of parameters. For example print, open and
many matplotlib visualisation functions.

* Don’t go overboard - too many parameters is
(usually) a sign that you are trying to do too
many different things.



Mutable objects as defaults
* Generally speaking not a good idea.

def a func(a, b = []):
b.append(a)
return sum(b)

x = a func(11)
y = a func(12, [1, 3, 5])
z = a func(13)
print(z)
>>> ?



The function type



Function definition

* A function definition is a variable assignment.
The variable name is the function name and the
value is an object of type function.

* For example:

def log(x, b):
...

* assigns an object of type function to the
variable named log.



def log(x, b):
'''A log function'''
...

>>> type(log)
>>> function
>>> ...
>>> log. doc
>>> 'A log function'



* You can do anything with this object you can do
with any other type in python, for example:
- reassign it
log = 15

- store it in a container
my list[0] = log
or
my dict['log function'] = log

- pass it as a parameter to another function
func 2(a, b, log function = log)



* Except reassignment, none of these actions
stop you from calling the function.

def log(x, b):
...

my dict['log function'] = log
...
my dict['log function'](15, 3)

* Can be used to make your code more general,
e.g. a function that solves an equation.



Recursion



Recursion
* The suite of a function can contain function

calls, including calls to the same function.
- This is known as recursion.

* The function suite must have a branching
statement, such that a recursive call does not
always take place (“base case”); otherwise,
recursion never ends.

* Recursion is a way to think about solving a
problem: how to reduce it to a simpler instance
of itself?



Problem: Counting boxes

* How many boxes
are in the stack
from the box in
front of the
sensor and up?

* If robot.sense color() == ’’, then the
answer is zero.

* Else, one plus what the answer would be if the
lift was one level up.



def count boxes():
if robot.sense color() == ’’:

return 0
else:

robot.lift up()
num above = count boxes()
robot.lift down()
return 1 + num above



The call stack (reminder)
* When a function call begins, the current

instruction sequence is put “on hold” while the
function suite is executed.

* Execution of a function suite ends when it
encounters a return statement, or reaches the
end of the suite.

* The interpreter then returns to the next
instruction after where the function was called.

* The call stack keeps track of where to come
back to after each current function call.



1 ans = count boxes()

2 if robot.sense color() == ’’:

3 robot.lift up()

4 num above = count boxes()

5 if robot.sense color() == ’’:

6 return 0

7 num above = 0

8 robot.lift down()

9 return num above + 1

10 ans = 1



Problem: Fibonacci numbers

* The Fibonacci numbers are the sequence:
0, 1, 1, 2, 3, 5, 8, 13, . . .

* Mathematically we can define it as:
- Fn = 0 if n = 1
- Fn = 1 if n = 2
- Fn = Fn−1 + Fn−2 if n > 2

* What is F10?


