
COMP1730/COMP6730
Programming for Scientists

Recap and Where Next?



Announcements

* Practice Examination Available in Wattle.
* Final Examination is on June 10.
* Please attend any lab this week.



Lecture outline

* Recap of the course
* What else is in Python
* Learning other languages
* And then what?



The Basic Building Blocks
* We started with an introduction to the

fundamental programming constructs:
- Variables, statements, expressions and data

types (L1 & L3).
* Then moved on to the different ways of

changing the flow of execution.
- Functions and functional abstraction (L2, L4,

L14 & L22).
- Control flow - if/else, for and while (L5 &

L6).



Data Types

* We looked in detail at a few different data types:
- str (L9)
- float (L11)
- list and tuple (L7 & L13)
- dict and set (L17)

* And the differences between immutable types
and mutable types (L13 & L17).



Writing Good Code

* We have focused a lot of energy on trying to
write good code:
- Code quality - comments, docstrings, naming,

organisation, efficiency (L8)
- Testing and debugging - unit tests using
pytest (L10)

- Error handling and exceptions (L19)
- Design and organisation and standards (L20)



Other topics

* And finally some other topics we thought were
important:
- Data science - useful in general but also for

the major assignment (L12).
- Files and IO - how to read and write (large

amounts of) data (L16).
- Complexity - how our algorithms scale as data

gets larger (L18).
- Modules - how Python works with modules

(L21).



* So was this a thorough treatment of everything
in Python?



* Not even close!

* Used roughly 10 out of approximately 200
standard library modules. See this list for a
complete breakdown.

* Used roughly 15 out of the 1400+ in the
Anaconda Python distribution.

* And that’s not even counting the wealth of other
Python libraries that have been developed.

https://docs.python.org/3/py-modindex.html


Object Oriented Programming
* Conceptually, the biggest missing piece is likely

object oriented programming.

class NewClass(object):
def __init__(self, p1, p2):

self.p1 = p1
self.p2 = p2

def m1(self):
return 2 * self.p1 + self.p2

...



And Python has a package to do
just about everything
* Data Science and Machine Learning - numpy,
SciPy and Scikit-learn.

* Image Processing - scikit-image, Pillow
and OpenCV.

* GIS - shapely and geopandas.
* Audio - https://wiki.python.org/moin/Audio/.
* Videos, games, databases, webpages, you

name it, someone has written a Python module
to do it.

https://wiki.python.org/moin/Audio/


* And are you limited to Python?



* What does the following C# function do?
public int Fun_A(List<int> sequence)
{

int total = 0;
foreach (int i in sequence)
{

if (i > 0)
{

total += i;
}

}
return total;

}



* We said at the start that this was going to be a
programming course that uses Python, not a
Python course.

* Learning a second language will be much easier
than learning the first one was.

* Concepts like loops, if/else, functions, types, etc.
are all used in most modern programming
languages.

* You just need to learn the different syntax, but
the approach can stay the same.



Other Programming Courses at
ANU

* COMP1100 - Programming as Problem Solving
* COMP1110 - Structured Programming
* COMP1600 - Foundations of Computing

* These courses focus less on the syntax and
programming language, and more on how
language features and models are used to solve
problems.



Other ANU Computing Topics

* Software Engineering
* Data Science
* HCI
* AI and Machine Learning
* Computer Systems
* Security
* and many more.


