
COMP1730/COMP6730
Programming for Scientists

Testing and Defensive
Programming.

Announcements

* Homework 3 due at 9:00am Monday 29 March.
* Census date 31 March

Overview

* Testing
* Defensive Programming

Overview of testing
* There are many different types of testing - load

testing, integration testing, user experience
testing, etc.

* Different software systems have different testing
requirements, based on:
- Consequences of failure
- Complexity of software
- Frequency of use
- Hardware and user interactions

* Even for critical, commercially developed
software, testing gives no guarantees - e.g.
Boing Max crashes and Mars Climate Orbiter.

Unit-Testing

* We are concerned with unit-testing or functional
testing.

* Usually done at the function (or method level).
* Done by calling a function with specified

parameters and checking that the return value is
as expected.

* We usually want to focus on edge-cases.

The assert Statement

* Basic usage:
assert boolean expression, message

* If the expression is True execution continues.
* If the expression is False an
AssertionError is raised, execution stops
and the message is printed.

* Can be used to intentially cause a run-time error
if assumptions are violated.

Unit-testing in Python
* There are many ways to do unit-testing in

Python. We are using the pytest module,
which makes use of assert statements.

import pytest

def test is factor():
assert is factor(8, 4) == True
assert is factor(7, 4) == False

Identifying Edge-Cases
* A lot of the hardest to find bugs only occur

under certain conditions or inputs, we often call
these edge-cases.

* Typical numerical edge-cases
- 0, very close to 0, very large or very small

numbers, largest valid input.
- Inputs that cause intermediate values to be 0

* Other examples: empty sequences, repeated
values, x and y swapped around, etc.

* Don’t write unit tests for invalid inputs unless
testing error handling.

Tips for unit-testing
* Have your tests in a separate file.
* A small function is easier to test than a large

function.
* A function that only does one thing is easier to

test than a function that does many things.
* Unit-testing is only concerned with the outputs

of a function (and occasionally side-effects).
Don’t try and test how a function does its thing.

* Especially true when testing class methods (not
really covered in this course).

Other Testing Considerations

* Floating point precision
* Random numbers (use a seed to get

reproducable results).
* User input (isolate the user input to a function

and simulate input).
* Only use your code to generate tests for

refactoring purposes, not for testing correctness.
* Testing only guarantees your code works for

the test cases!

Defensive Programming

Everyone knows that debugging is twice as hard
as writing a program in the first place. So if you’re
as clever as you can be when you write it, how will
you ever debug it?

Brian Kernighan

Code Quality Matters!
* A function that is hard to read is hard to debug.

def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC-1:-ABC-1:-1]
if ABC == 0:

return 0
abC = AbC(ABc[-ABC:ABC-1:])
if ABc[-ABC] < 0:

abC += ABc[len(ABc)-ABC]
return abC

Pre and Post Conditions
* Functions allow for breaking larger programs

into small pieces which can be separately tested
and debugged.

* assert statements allow us to ensure that only
appropriate parameters are passed as
arguments to functions.
Example: assert type(param a) == int
and param a > 0

* Unit tests allow us to verify that the function is
returning the appropriate value for the given
inputs.

Explicit vs Implicit

* Make things explicit if they are unclear or could
be confusing. Even if they are working as
intended.

* return None is better than no return
statement.

* - (2 ** 2) instead of - 2 ** 2.
* (a and b) or c instead of a and b or
c.

* dict() instead of { }.

Avoid Language Tricks
* Don’t make use of language quirks in your code.
* Example: operator chaining.

>>> 1 == 2
False
>>> False is not True
True
>>> 1 == 2 is not True
???

Mutable Default Arguments
* Syntactically valid but lead to hard to find bugs.

def fun A(x, new list = []):
new list.append(x)
return [element * x for element

in new list]

a = [1, 2, 3]
print(fun A(5))
print(fun A(3, a))
print(fun A(5))

