COMP1730/COMP6730

Programming for Scientists

Testing and Defensive
Programming.

Announcements

* Homework 3 due at 9:00am Monday 29 March.
* Census date 31 March

Overview

* [esting
* Defensive Programming

Overview of testing

* There are many different types of testing - load
testing, integration testing, user experience
testing, etc.

» Different software systems have different testing
requirements, based on:
— Consequences of failure
— Complexity of software
- Frequency of use
- Hardware and user interactions

* Even for critical, commercially developed
software, testing gives no guarantees - e.g.
Boing Max crashes and Mars Climate Orbiter.

Unit-Testing

» We are concerned with unit-testing or functional
testing.

*» Usually done at the function (or method level).

* Done by calling a function with specified
parameters and checking that the return value is
as expected.

*» We usually want to focus on edge-cases.

|;__;| Ausigﬁa[ﬁm

The assert Statement

*» Basic usage:

assert boolean expression, message

* If the expression is True execution continues.

* |f the expression is False an
AssertionError is raised, execution stops
and the message is printed.

*» Can be used to intentially cause a run-time error
if assumptions are violated.

Australian
National

: University

Unit-testing in Python

* There are many ways to do unit-testing in
Python. We are using the pytest module,
which makes use of assert statements.

import pytest

def test_is_factor():
assert is_factor (8, 4) == True
assert is_factor (7, 4) == False

Identifying Edge-Cases

* A lot of the hardest to find bugs only occur
under certain conditions or inputs, we often call
these edge-cases.

» Typical numerical edge-cases
- 0, very close to 0, very large or very small

numbers, largest valid input.

- Inputs that cause intermediate values to be 0

*» Other examples: empty sequences, repeated
values, x and y swapped around, etc.

*» Don’t write unit tests for invalid inputs unless
testing error handling.

Tips for unit-testing

*» Have your tests in a separate file.
*» A small function is easier to test than a large
function.

* A function that only does one thing is easier to
test than a function that does many things.

* Unit-testing is only concerned with the outputs
of a function (and occasionally side-effects).
Don'’t try and test how a function does its thing.

*» Especially true when testing class methods (not
really covered in this course).

Other Testing Considerations

* Floating point precision

* Random numbers (use a seed to get
reproducable results).

*» User input (isolate the user input to a function
and simulate input).

*» Only use your code to generate tests for
refactoring purposes, not for testing correctness.

*» Testing only guarantees your code works for
the test cases!

Defensive Programming

Everyone knows that debugging is twice as hard
as writing a program in the first place. So if you're
as clever as you can be when you write it, how will
you ever debug it?

Brian Kernighan

Australian
National

University

Code Quality Matters!

* A function that is hard to read is hard to debug.

def AbC (ABc) :

ABC = len (ABc)
ABc = ABcC[ABC-1:-ABC-1:-1]
if ABC ==

return O
abC = AbC (ABc[-ABC:ABC-1:1])
if ABc[-ABC] < O0:

abC += ABc[len (ABc)-ABC]
return abC

Pre and Post Conditions

* Functions allow for breaking larger programs
into small pieces which can be separately tested
and debugged.

* assert Statements allow us to ensure that only
appropriate parameters are passed as
arguments to functions.

Example: assert type(param.a) == int
and param.,a > O

* Unit tests allow us to verify that the function is
returning the appropriate value for the given
inputs.

Explicit vs Implicit

*

Make things explicit if they are unclear or could
be confusing. Even if they are working as
intended.

return None is better than no return
statement.

— (2 %% 2)instead of - 2 %% 2.

(a and b) or c insteadof a and b or
c.

dict () instead of { }.

—| Australian
lational

5 University

Avoid Language Tricks

*» Don’t make use of language quirks in your code.
*» Example: operator chaining.

>>> 1 == 2

False

>>> False 1s not True
True

>>> 1 == 2 1s not True

227

Mutable Default Arguments
*» Syntactically valid but lead to hard to find bugs.

def fun A(x, new_list = []):
new_list.append (x)
return [element x x for element
in new_list]

a = [1, 2, 3]
print (fun_ A (5
print (fun_A (3
print (fun_ A (5

))
, a))
))

