
COMP1730/COMP6730
Programming for Scientists

Code Quality & Debugging

Lecture outline

* What is “code quality”?
* Debugging

Code quality

What is code quality and why
should we care?
* Writing code is easy – writing code so that you

(and others) can be confident that it is correct is
not.

* You will always spend more time finding and
fixing the errors that you made (“bugs”) than
writing code in the first place.

* Good code is not only correct, but helps people
(including yourself) understand what it does and
why it is correct.

(Extreme) example

* What does this function do? Is it correct?
def AbC(ABc):

ABC = len(ABc)
ABc = ABc[ABC−1:−ABC−1:−1]
if ABC == 0:

return 0
abC = AbC(ABc[−ABC:ABC−1:])
if ABc[−ABC] < 0:

abC += ABc[len(ABc)−ABC]
return abC

(Extreme) example – continued

* What does this function do? Is it correct?
def sum negative(input list):

"""Sums up all the negative
numbers in input list."""
total = 0
i = 0
while i < len(input list):

if input list[i] < 0:
total = total + input list[i]

i = i+1
return total

Aspects of code quality

1. Commenting and documentation.
2. Variable and function naming.
3. Code organisation (for large programs).
4. Code efficiency (somewhat).

How to comment?
* Raises the level of abstraction: what the code

does and why, not how.
- Except when “how” is especially complex.

* Describe parameters and assumptions
– python is not a typed language.

def sum negative(input list):
"""Sums up all the negative numbers in input list.
Assuming input list contains only numbers"""

* Don’t use comments to make up for poor quality
in other aspects (organisation, naming, etc.).

x = 0 # Set the total to 0.

How to comment?
* Up-to-date and in a relevant place.

loop over list to compute sum (BAD COMMENT)
avg = sum(the list) / len(the list)

* Another example of bad comment:
x = 5 # Sets x to 5.

* More comments than code is (usually) a sign
that your program needs to be reorganised.

* Good commenting is more important when
learning to program and when working with
other people.

Function docstring

* A (triple-quoted) string as the first statement
inside a function (module, class) definition.

* State the purpose and limitations of the
function, parameters and return value.

def solve(f, y, lower, upper):
"""Returns x such that f(x) = y.
Assumes f is monotone and that a solution
lies in the interval [lower, upper]
(and may recurse infinitely if not)."""

* Can be read by python’s help function.

Some conventions to specify each parameter and
the return value:
def solve(f, y, lower, upper):

"""Finds x such that f(x) = y.
:param f: a monotonic function with one
numeric parameter and return value.
:param y: integer or float, the value of
f to solve for.
...
:returns: float, the value of x such that
f(x) = y."""

Good naming practice

* The name of a function or variable should tell
you what it does / is used for.

* Variable names should not shadow a names of
standard types, functions, or significant names
in an outer scope.
def a fun fun(int):

a fun fun = 2 ∗ int
max = max(a fun fun, int)
return max < int

(more about scopes in a coming lecture).

* Names can be long (within reason).
- A good IDE will autocomplete them for you.

* Short names are not always bad:
- i (j, k) are often used for loop indices.
- n (m, k) are often used for counts.
- x, y and z are often used for coordinates.

* Don’t use names that are confusingly similar in
the same context.
- E.g., sum of negative numbers vs.
sum of all negative numbers – what’s
the difference?

Code organisation

* Good code organisation
- avoids repetition;
- fights complexity by isolating subproblems and

encapsulating their solutions;
- raises the level of abstraction; and
- helps you find what you’re looking for.

* python constructs that support good code
organisation are functions, classes (not covered
in this course) and modules (later).

Functions

* Functions promote abstraction, i.e. they
separate what from how.

* A good function (usually) does one thing.
* Functions reduce code repetition.
- Helps isolate errors (bugs).
- Makes code easier to maintain.

* A function should be as general as it can be
without making it more complex.

def solve(lower, upper):
"""Returns x such that
x ∗∗ 2 ∗ pi ˜= 1. Assumes ..."""

vs.
def solve(f, y, lower, upper):

"""Returns x such that f(x) ˜= y.
Assumes ..."""

Efficiency
Premature optimisation is the root of all evil in
programming.

C.A.R. Hoare

* Modern computers usually have enough power
to solve your problem, even if the code is not
perfectly efficient.

* Programmer time is far more expensive than
computer time.

* Code correctness, readability and clarity is more
important than optimisation.

When should you consider
efficiency?

* For code that is going to run very frequently.
* If your program is too slow to run at all.

A poor choice of algorithm or data structure may
prevent your program from finishing, even on
small inputs.

* When the efficient solution is just as simple and
readable as the inefficient one.

Debugging

What is a “bug”?
We could, for instance, begin with cleaning up
our language by no longer calling a bug a bug
but by calling it an error. It is much more hon-
est because it squarely puts the blame where it
belongs, viz. with the programmer who made
the error. The animistic metaphor of the bug
that maliciously sneaked in while the program-
mer was not looking is intellectually dishonest
as it disguises that the error is the program-
mer’s own creation.

E. W. Dijkstra, 1988

The debugging process
1. Detection – realising that you have a bug, e.g.,

by extensive testing.
2. Isolation – narrowing down where and when it

manifests.
3. Comprehension – understanding what you did

wrong.
4. Correction; and
5. Prevention – making sure that by correcting the

error, you do not introduce another.
6. Go back to step 1.

Kinds of errors

* Syntax errors: easy to detect
* Runtime errors: not difficult to detect
* Semantic (logic) errors: difficult to detect

Syntax errors

* IDE/interpreter will tell you where they are.
SyntaxError: invalid syntax
if spam = 42:

print(’Hello!’)

IndentationError: unexpected indent
print(’Hello!’)

print(’Howdy!’)

Runtime errors

* Code is syntactically valid, but you’re asking the
python interpreter to do something impossible.
- E.g., apply operation to values of wrong type,

call a function that is not defined, etc.
- Causes an exception, which interrupts the

program and prints an error message.
- Learn to read (and understand) python’s error

messages!

Example runtime errors

TypeError: ’str’ object does not support item
assignment
spam = ’I have a pet cat.’
spam[13] = ’r’

IndexError: list index out of range
spam = [’cat’, ’dog’, ’mouse’]
print(spam[6])

Sematic errors (logic errors)
*- The code is syntactically valid and runs

without error, but it does the wrong thing
(perhaps only sometimes).

- To detect this type of bug, you must have a
good understanding of what the code is
supposed to do.

- Logic errors are usually the hardest to detect
and to correct, particularly if they only occur
under certain conditions.

* python allows you to do many things that you
never should.

Isolating and understanding a fault
* Work back from where it is detected

(e.g., the line number in an error message).
* Find the simplest input that triggers the error.
* Use print statements (or debugger) to see

intermediate values of variables and
expressions.

* Test functions used by the failing program
separately to rule them out as the source of the
error.
- If the bug only occurs in certain cases, these

need to be covered by the test set.

Some common errors
* python is not English.

if n is not int:
...

if n is (not int):
...

* Statement in/not in suite.
while i <= n:

s = s + i∗∗2
i = i + 1
return s

* Precision and range of floating point numbers.

* Loop condition not modified in loop.
def sum to n(n):

k = 0
total = 0
while k <= n:

total = total + k
return total

* Off-by-one.
def smallest power2(n):
"""Return the smallest power of 2 that is >= n"""

k = 1
while k < n:

k = k ∗ 2
return k

Take home messages

* It’s important to comment, organise your code
with good naming, so that others can
understand it. Efficiency is only of secondary
importance.

* Syntax, runtime and logic errors are 3 kinds of
bugs, where logic ones are most difficult to find.
Try to design good test cases to debug (more
later).

