
Contents

COMP1730/6730 2023 Semester 1, Project-3 (Bioinformatics) 1
The problem . 1

Problem One: DNA Sequence Alignment 1
Problem Two: Likelihood of gene mutation 3

The programming tasks . 5
References . 6

COMP1730/6730 2023 Semester 1, Project-3 (Bioinfor-
matics)

The assignment is an exercise in Bioinformatics which requires to align short gene
sequences and calculate the mutation likelihood of one sequence transforming into
another. Computationally, it involves strings, lists and doubly-nested lists, and some
operations which need to be performed on such lists. Alternatively, one can use Numpy
arrays, 1-dimensional arrays instead of lists, 2-dimensional arrays instead of nested
lists. The estimated size (including the code comments and docstrings) is approximately
250 lines of code. The time effort is 10–12 hours.

This is slightly modified problem which was used as a programming assignment in
Princeton University in 2010s.

The problem

The science of Bioinformatics is broadly defined as “the application of tools of com-
putation and analysis to capture and interpret biological data” (A. Bayat, “Science,
medicine, and the future: Bioinformatics”, British Medical Journal, 324 (2002),
p.1018-1022). One fundamental part of it is a sequence analysis of DNA and pro-
teins, which is often called Genomics. In this assignment, we will learn how to solve
two simple problems of genomics: likelihood of gene mutation and gene sequence
alignment.

Both problems deal with two gene sequences which can be described as strings of
symbols representing four nucleotides (or, bases), A, C, G and T:

GATACAAAACTATGATAATTGCTAGATACATAGATACAGATAGATACAGATAGTCG

The first problem quantifies the difference between two sequences (of possibly
unequal length), so that the two can be aligned and considered as mutational
variation of one another. The second problem calculates the likelihood that the two
sequences are related by mutation.

Problem One: DNA Sequence Alignment

Often a protein function encoded in a genetic sequence is determined by comparing
this sequence to another sequence (perhaps belonging to a different organism) which

1

is already known. Comparing, or aligning, the two sequences is a viable method
which may ease the task of determining protein functions.

The alignment is performed by calculating the edit-distance of sequences. The edit-
distance is also used in coding theory, spell checking, plagiarism detection, version
control, computational linguistics and other areas. The method to calculate the
edit-distance of two sequences consists in aligning them (allowing gaps to make up
for missing symbols since the sequences can have unequal length). Each mismatch
or gap in an alignment incurs a penalty. In genomics applications, the following
penalty function is often used:

Penalty Cost

Gap 2
Mismatch 1
Match 0

Two examples next illustrate how this penalty assignment works:

Penalty 1 0 1 1 0 0 1 0 2 2

Sequence 1 A A C A G T T A C C
Sequence 2 T A A G G T C A - -

and

Penalty 1 0 2 0 0 1 0 2 0 1

Sequence 1 A A C A G T T A C C
Sequence 2 T A - A G G T - C A

The total cost of alignment is just a sum of all penalties; in the above examples, it’s
8 for the first alignment and 7 for the second. The edit-distance is defined as the
smallest total penalty among all possible alignments. One can tackle this problem in
two ways: a recursive one (relatively simple) and a dynamic programming.

A recursive (naive) approach is quite simple, bit it can be very demanding computa-
tionally since the number of possible alignments grows exponentially with the length
of sequences. The algorithm of recursive approach for calculating the edit-distance
goes like this:

• Take two original sequences x , y of the length M , N correspondingly, and
denote their edit-distance:

edist(x , y)≡ edist(0, 0),

2

where edist(i, j) is the edit-distance of two suffix sequences x[i..M] and y[j..N]
(in other words if x = x0 . . . xM , its suffix sequence x[i..k] is the same as a
subsequence x i . . . xk, i ⩾ 0, k ⩽ M , and similarly for the suffix sequence
y[j..N]). The task now is to write down a recursive relation for edist(i, j).

• In the optimal alignment, there are three possibilities:

– x[i] and y[j] align with penalty 0 or 1 depending whether they match
or not, the remaining contribution is edist(i + 1, j + 1);

– there is a gap in the y sequence which contributes penalty 2, and the
remaining term comes from aligning x[i + 1..M] and y[j..N] with the
contribution edist(i + 1, j);

– there is a gap in x sequence (penalty 2), and the remaining alignment
contributing edist(i, j + 1).

The optimal alignment for x[i..M] and y[j..N] must be obtained by minimis-
ing edist:

edist(i, j) =min
¦

edist(i+1, j+1)+(0 or 1), edist(i+1, j)+2, edist(i, j+1)+2
©

, i < M , j < N .

• When i = M , the remaining alignment with an empty sequence contributes
2(N − i), and analogously for j = N case:

edist(M , j) = 2(N − j) and edist(i, N) = 2(M − i)

The above cases are enough to calculate edist(0,0) for any x and y, and thus
calculate edist(x , y). Your task is to implement this algorithm.

A more sophisticated dynamic programming approach allows to overcome the in-
efficiency of the recursive approach related to multiple repetitions of the same
computation when one moves from one recursive level to the previous one. In a case
of two sequences having the length N , the number of recursive calls (almost all of
them redundant) grows like 2N . The dynamic programming allows to avoid unnec-
essary computation by breaking the original problem into subproblems, storing the
result of their solution (when those are obtained for the first time), and then simply
re-using those results when they are needed instead of repeating same computation
over and over again. This technique is also called memoization. We shall discuss it
in the lectures on a simple example. If you decide to employ this approach here, you
need research this topic to the greater extent yourself (by using references provided
in Bibliography) and apply what you will have learnt.

Problem Two: Likelihood of gene mutation

Once you found two aligned sequences (which belong to different species), you
may ask the question whether they are related by mutation. Here, we have data

3

(two aligned sequences) and the problem is to test if the model which describes the
mutation of genes can describe these data with sufficient likelihood.

The model here is represented by the probability values with which every nucleotide
occurs in a gene sequence, and by the mutation matrix M which describes the
probabilities of each nucleotide A, C, G and T turning into some other in the
process of copying the genetic information (when a new sequence is created by
copying an existing one). We shall assume that the model is fixed: the probability of
every base to occur is given by four values (which sum up to 1):

πA = 0.1, πC = 0.4, πG = 0.2, πT = 0.3.

The probabilities of base changes during a single step of copying are described by
the matrix:

M=







0.976 0.010 0.007 0.007
0.002 0.983 0.005 0.010
0.003 0.010 0.979 0.007
0.002 0.013 0.005 0.979







where we assumed an alphabetical ordering of the nucleotides A, C, G and T, and
the Python-like indexing rule (the first element has the index 0), the matrix element,
for example,M23 gives the probability of one-step mutation G→ T.

If we have two aligned sequences which may be related by a single act of mutation,

CCAT
︸ ︷︷ ︸

s1

−→ CCGT
︸ ︷︷ ︸

s2

,

the likelihood for going from one sequence to the second is calculated as follows:

P(s1, s2, 1) = πCMccπCMccπAMagπTMt t = 0.4·0.983·0.4·0.983·0.1·0.007·0.3·0.979= 0.000300

If the number of copying is 2, the likelihood of mutation is calculated as above in,
except that the matrix elements are now taken from the matrixM2, the square ofM,

M2 =







0.976 0.010 0.007 0.007
0.002 0.983 0.005 0.010
0.003 0.010 0.979 0.007
0.002 0.013 0.005 0.979







2

=







0.953 0.020 0.013 0.015
0.005 0.966 0.010 0.020
0.007 0.020 0.959 0.015
0.005 0.026 0.010 0.959






.

For three-step copying, the matrix used is cube ofM,M3, and so on. The general
tendency is that the diagonal elements decrease (the probability of no mutation

4

falls), and the off-diagonal elements increase (the mutation probability rises with
the number of copying).

Your task will be to calculate the probability P(s1, s2, n) of converting a sequence s1
into a sequence s2 in n mutation steps. This probability has a maximum nmax which
can be used to analyse the mutation model. You will have to confirm existence of
the maximum and calculate nmax. When two sequences belong to taxonomically
related species, the calculated maximum may be used to verify the validity of model
(by comparing the number of steps corresponding to the maximum and the genes
position on the taxonomy tree).

There is a question of how to deal with gaps in the alignment of two sequences. A
reasonable approach would be to accept that the gap could contain any of the four
nucleotides, so that the mutation probability factor can be 1. For example (extending
on the case of the equation for P(s1, s2, 1):

CCGAT → CC–GT : πCMccπCMcc πGMg→anyπAMagπTMt t

PCCGAT→CC−GT = 0.4 ·0.983 ·0.4 ·0.983 ·0.2 · 1 ·0.1 ·0.007 ·0.3 ·0.979= 0.0000600

Computationally, this is a straightforward problem: you will have to represent
the 4 × 4 mutation matrix as a nested list, and define the operation of matrix
multiplication on such doubly-nested lists. Alternatively (and more performant),
one could use a NumPy 2D array, and use the built-in matrix multiplication.

As a part of the analysis, you will plot the found likelihood P(s1, s2, n) as the function
of n.

The programming tasks

Your task will be to make sense out of the above algorithms and implement them in
Python. Namely, this is what your program should be able to do:

1. When started, make the program to read two strings of nucleotide symbols
(A, C, G and T, the case doesn’t matter) from a data file, whose name is either
passed as a command-line argument, or typed in on the program prompt (the
second option is for Windows-challenged). Also pass a second command-line
argument which will set the maximum length of the sequences (for prompt-
based interface, make the program to request it as the second input). Verify
that the content of sequences is valid, and their length is within the acceptable
limit.

2. Calculate the edit-distance and the corresponding alignment of the sequences
represented by the above strings using either a recursive or a dynamic program-
ming approach. The found value of edit-function and the aligned sequences
must be reported to the user.

5

3. Find the value of nmax where the likelihood has maximum and calculate this
maximum. Both quantities must be communicated to the user.

4. Plot the likelihood-vs-n function using the matplotlib package.

References

• “The Idiot’s Guide to the Zen of Likelihood in a Nutshell in Seven Days for
Dummies, Unleashed” by Peter G Foster. A preprint of this article (apparently,
it has never been published) is not easily found online these days, therefore,
we provide its local copy, The Idiot Guide. The first half of the paper contains
discussion of how to calculate the likelihood of mutating aligned sequences.

• The Wikipedia article Sequence alignment.

6

http://en.wikipedia.org/wiki/Sequence_alignment

	COMP1730/6730 2023 Semester 1, Project-3 (Bioinformatics)
	The problem
	Problem One: DNA Sequence Alignment
	Problem Two: Likelihood of gene mutation

	The programming tasks
	References

