
Reminders

• No labs in Week 1. All labs start in Week 2.

• Python installation help sessions:

• Tues – 3-5pm – Birch Building, Lab 1.08
• Thurs – 11am-1pm – room N114, CSIT Building (#108)

• Important To-do items:

• Please fill in the Demographic Information Questionnaire on Wattle
• Sign up to a lab group

• via myTimetable: https://mytimetable.anu.edu.au/odd/student
• Login to STREAMS before your first lab (this is required to set things up for you):

• https://cs.anu.edu.au/streams/login.php

Read the news forum on Wattle

CECC Class Representatives
Class Student Representation is an important component of the teaching and learning
quality assurance and quality improvement processes within the ANU College of
Engineering and Computer Science (CECC).
The role of Student Representatives is to provide ongoing constructive feedback on
behalf of the student cohort to Course Conveners and to Associate Directors (Education)
for continuous improvements to the course.

Roles and responsibilities:
• Act as the official liaison between your peers and convener.
• Be available and proactive in gathering feedback from your classmates.
• Attend regular meetings, and provide reports on course feedback to your course

convener
• Close the feedback loop by reporting back to the class the outcomes of your

meetings.

ANU College of Engineering and Computer Science - Student
Employability and Experience 2

• Ensure students have a voice to their course
convener, lecturer, tutors, and College.

• Develop skills sought by employers, including
interpersonal, dispute resolution, leadership and
communication skills.

• Become empowered. Play an active role in determining
the direction of your education.

• Become more aware of issues influencing your
University and current issues in higher education.

• Course design and delivery. Help shape the delivery of
your current courses, as well as future improvements for
following years.

• Note: Class representatives will need to be comfortable with their contact
details being made available via Wattle to all students in the class.

• For more information regarding roles and responsibilities, contact:

• ANUSA CECC representatives: sa.cecs@anu.edu.au

2 FEB 2022

• Why become a class
representative?

Want to be a class representative?
Nominate today!

Please nominate yourself to your course convener by
end of Week 2, Sem 1, 2024.

ANU College of Engineering and Computer Science - Student
Employability and Experience

Interested? Write to comp1730.convenor@anu.edu.au
or talk to us after the lecture.

Variables (part II)
COMP1730 & COMP6730

Reading:
Chapter 2 : Downey, Think Python

Chapter 2, Sundnes, ItSPwP
OR

https://docs.python.org/3/tutorial/index.html

Every variable has a type

• Variable types in python:
• Integers (type int)
• Floating-point numbers (type float)
• Text strings (type str)
• Truth or Boolean values (type bool)

• Variable types determine what we
can do with values (and sometimes
what the result is)

• The type() function tells us the
type of a variable:

Numeric types: int

• int types represent the mathematical integers (positive and negative
whole numbers) (0, 1, 2, -1, -17, 4096,…)
• Values of type int have no inherent size limit in python

• Note: can’t use commas to format integers for readability
• Write 128736 not 1,282,736

Numeric types: float

• Floating-point numbers (type float) approximate the mathematical
real numbers
• Values of type float have limited range and limited precision

• Min/max ± 1.79 x 10308

• With a few exceptions to this limit
• Though this is the typical limit – the actual limits depend on the python

implementation
• Type float also has special values ± inf (float(‘inf’),

meaning infinity) and nan (float(‘nan’), meaning not a
number)

String variables

• Strings (type str) represent text
• A string literal is enclosed in single or double quote marks

• A string (in python) can contain other types of quote mark, but not
the one used to delimit it
• More about strings (so much more) in a coming lecture

Type casting: int(), str(), float()

• When a variable is first defined, python will take a guess about type.
• When we want to convert between variable types, or be explicit about

type when it may not be obvious -- use int(),str() and float()
• There is no automatic type conversion. So, need to convert between

types when necessary.

Most variables can be changed

• Just in case it comes as a surprise, you are able to re-assign the values
of most variables in python. This removes the previous value and
replaces it with the new value.
• Most variables in your programs can change – and that is good too

• Increment and Decrement for counting

Downey (2015) Think Python, 2nd Ed.

Variable assignment

• A variable assignment is written:
var_name = expression
• This ‘=‘ means something different to this ‘==‘
• When executing an assignment, the interpreter:

1. Evaulates the right-hand side expression
2. Associates the left-hand side name with the resulting value

Division means a float

• Every constant (literal) with a decimal point represents a float:

• The result of division is always a float:

• Floats can be written (and sometimes printed) in scientific notation:
• 2.99e8 means 2.99 . 108
• 6.626e-34 means 1.626 . 10-34
• 1e308 means 1 . 10308

String variables are sequences

• Each of the characters in a string may be treated individually.
Because str variables are sequences. More on this in later lectures.
• To access each character in a string, you use the index value (enclosed

in square brackets []):

• Index values always start counting from zero!

Lists (quick mention)

• There are other sequence variable types in python. These are very
useful and the topic of whole later lectures.
• Lists – a sequence of variables that are ordered by index.

• Lists may contain variables of mixed types, or of a single type.

Dictionaries (quick mention)

• Abbreviated as dict variables. Also the topic of a whole lecture, later.
• For storing key-value pairs in a single variable. Can use as a lookup table.

Also very useful:

• Note the curly braces ‘{}’ for defining a dict, and the square brackets ‘[]’
for accessing the values by key.

Variable names

• There are simple rules that govern the names that can be given to variables.

• Good coding practice: make meaningful names that aid understanding

• Names can be long and contain:
• Uppercase letters
• Lowercase letters
• Numbers
• Underscores _ but not spaces (this_is_a_variable, not this is a variable)

• Must not start with a number

• Must not contain symbols or illegal characters (apart from underscore)

• Here are some illegal variable names:

Downey (2015) Think Python, 2nd Ed.

Variable names must not be Python keywords

• Don’t try to use these as variable names:

• This will become natural for you after some practice

Downey (2015) Think Python, 2nd Ed.

Avoid built-in function names too

• Will get to built-in functions in a
moment. But these names make
bad variable names:
• The problem is that these names

will ‘work’ – but have
consequences too
• Since python 3.10, there are soft

keywords too (match, case)
• My simple rule – no keyword

contains underscores between
words J … yet.

Expressions and Statements

• Expression: a combination of values, variables and operators

• Statement: code that has an effect or makes a change to state

Downey (2015) Think Python, 2nd Ed.

Numeric operators in python

• If you have python already installed, try some of these out (with
iPython through a terminal, or with Spyder via the console)

Operator Function
+, -, *, / Standard arithmetic

** Power (x ** n means Xn)

// Floor division (9 // 2 gives 4)

% (modulus) Remainder (9 % 2 gives 1)

Floor division and modulus

• Floor division is a neat trick in Python. It divides two numbers,
discards the remainder and returns an integer value:

• To get the remainder, use the modulus ‘%’:

Downey (2015) Think Python, 2nd Ed.

Order of operations - Precedence

• You should know this from high school maths
• The order of precedence of mathematical operators
• PEMDAS: parentheses, exponents, multiplication, division, addition,

subtraction
• Matters a whole lot in code – PEMDAS is strictly enforced:

The result of 6 + 4 / 22 - 2 * 10 is very different to (6 + 4) / (22 - 2) * 10

• If in doubt, just use parentheses. Some overuse of parentheses is
much better than coding a bug that is very hard to track down

Comparison operators

• Can compare two values of the same type (for almost any type)
• Comparisons return a truth value (Booleans, type bool), which is

either True or False
• Caution: Conversion from any type to bool happens automatically,

but the result may not be what you expect.

Operator
<, >, <=, >= ordering

== equality

!= Not equal

String operations

• Funny use of mathematical ‘+’ and ‘*’ operators on strings
• This is a common syntactic shorthand in many languages, but the

specifics differ from language to language
• In Python:

>>> sentence = ‘This’ + ‘is’ + ‘a’ +’sentence’
>>> print(sentence)
Thisisasentence

>>> ‘a’ * 3
aaa

>>> (‘a’ + ‘b’ + ‘c’) * 3
abcabcabc

Examples:

• Modulus
• PEMDAS
• Comparison operators
• float comparison
• string operations

Comments

• Use them! It is good programming practice
• Sensible use of comments throughout your code is a good habit to

cultivate
• Makes your code easier to read and be understood by others
• Will help you remember what you did
• Can start as a structure to guide your coding – like writing

pseudocode

• If you ever become part of larger, group-programming projects, your
commenting style will really begin to matter.

Comments: The # symbol

• In python, and many other languages, the remainder of a line
following a ‘#’ will be ignored by the interpreter/compiler

Downey (2015) Think Python, 2nd Ed.

Multi-line comments ”””

• Sometimes is it useful to have comments that are a paragraph of text
• Using # at the beginning of every line can become annoying

• Instead, bound the paragraph with three “ symbols together:

• Can be ’’’ instead (three single quotes)

””” Here is a multi-line comment that allows
 a block of text
 so I can waffle on about my code design
 or include good usage notes for my script ”””

Types of errors

• Every beginning (and experienced) programmer makes errors!
• Learning to remain calm and know what to do when you see one is

part of the programmer skillset. Python is quite chatty
• These can be classified into:
• Syntax errors – the language usage you have written is not

understood
• Runtime errors – an exception is raised. Your code is legal, but at

runtime something unexpected occurred.
• Semantic errors – Your code runs without error, but does the wrong

thing.

Examples:

• Comments:
• #
• ”””
• ’’’

• A syntax error
• A runtime error
• A semantic error

Exercises

• Complete Exercises 2-1 and 2-2 of Think Python.

Reading

• Chapter 2 of Think Python AND/OR

• Chapter 2 of Introduction to Scientific Programming with Python AND/OR

• https://docs.python.org/3/tutorial/introduction.html

Installing python with
Anaconda

You must try this before labs start next week

Anaconda?

• The cool thing about python is the number of external code libraries you
can use.

• A less-cool thing about python is the job of installing the libraries you want
AND all of their dependencies. This is where Anaconda helps out (and
mostly makes is easier…). Yes, there is PIP also (and if you like that, cool).

• For now, we will use Anaconda to install a recent release of python and a
couple of IDEs

Installing python

• Every book about beginning python starts with ‘installing python’
• Some computer OS have python installed by default, others don’t.

Some will only have python 2 installed.
• We will solve many difficulties if we all install python with Anaconda

Install instructions:

• The long description is here (with tips and help):
https://comp.anu.edu.au/courses/comp1730/labs/install/

• The short description is - go to:
https://www.anaconda.com/download

• If you get stuck:
• Python installation help sessions:

• Tues – 3-4pm – Birch Building, Lab 1.08
• Thurs – 11am-noon – room N114, CSIT Building (#108)

• Some help will be available in labs in Week 2, but this will a long first lab, so
don’t leave it until then, please.

Anaconda comes with many different IDEs:

• Spyder 5.3.3 via Anaconda worked for me, but it is a bit flakey.
• VSCode 1.74.3 worked out of the box

This might a SLOW to start with…

Spyder

Check the Python
version you get with
Anaconda.

I got 3.9 a month
back. Obvs the
installer used what
was already on my
laptop?

Should be as new or
newer than this.

Python install – what might go wrong

• Please test your installation – see here:
• https://comp.anu.edu.au/courses/comp1730/labs/install/

• Let Anaconda do an upgrade when you first start it.

• Maybe you already have python installed?
• And maybe it is super old, like python 2 or python pre-3.8

• Python installation help sessions:
• Tues – 3-5pm – Birch Building, Lab 1.08
• Thurs – 11am-1pm – room N114, CSIT Building (#108)

• Some help will be available in labs in Week 2, but this will a long first lab, so don’t
leave it until then, please.

