
Announcements

• Labs begin this week
• Labs in computer labs (CSIT Building, Hanna Neumann Building)

• Have a computer for every student
• Also, can use your own computer

• Labs in Marie Reay Building are Bring-Your-Own-Device (BYOD) labs
• Device == Laptop computer
• Your device should have anaconda, python, etc installed
• Charge your battery before attending the lab

Academic honesty
• Submitted code will be checked computationally for evidence of plagiarism.

• If evidence of plagiarism is found in individual homework problems, the mark for that individual homework will not be
posted, until all homeworks have been assessed. In the context of all homeworks if it is decided there is evidence of
repeated plagiarism, students will be interviewed for possible action of academic misconduct.

• The take-home assignment and exam will also be checked for evidence of academic misconduct.

• What is okay: for the homework, discussing the programming problems and approaches to solve them with other
students is allowed, provided that no code is exchanged and that the final solution and code is written individually. In
this case, the other students involved in the discussion must be listed in a comment at the top of the homework.

• For the final exam and take-home assignment must be individual work. You may not discuss the questions or your
answers with anyone (this includes any on-line forum).

• Note that in all cases every line of code submitted must be fully written by you from scratch (and not just a modified
copy of a version from the internet), And must be fully understood and explainable by you. Sufficient inline comments
should be provided to make clear that you understand the code.

• Note on large language models and other code generators: generative AI models such as github copilot, chatGPT, Bing
chatbot etc can be used by students for the homeworks and take-home assignment to explore solutions and
understand their own code. They will not be allowed for the final exam. But in all cases the final code submitted by the
student must be fully written and understood by the student, as described above.

• If you are unsure, please ask your tutor or the convenors.

Academic Honesty – Policy:

If we find evidence of cheating or copying of work, we will:
1. Review the potential copied work
2. Raise a flag on the student work as ‘under investigation’
3. Further evidence of cheating for a given student will result in all

homework and/or assignment marks being set to 0 for that student

Fair use and acknowledgement
• Working on homework together and sharing the solution (even if you did half

of it)
• Copying and pasting code or text from the internet (even if you changed it a

bit)
• Talking to friends and classmates about questions

• Acknowledge them by name at top of homework, just in case you make the same unusual error

• You let a friend read your completed homework or assignment
• If your work looks enough like theirs during marking, you both will be punished equally

• ChatGPT/CoPilot wrote the first draft, but I completely re-wrote the whole
document in my own words
• Be careful – if you don’t fully understand the solution, you will be marked very hard
• If ChatGPT/CoPilot is wrong, you will look bad and you will be marked very hard

• You read programming books/websites and found examples where similar
problems were solved and then wrote my own text/program with this
knowledge (and you gave proper attribution to your sources).
• Proper academic conduct requires you MUST cite your sources. It is not your primary

work and you must give acknowledgement

Where to find more information

• Academic Skills @ ANU (https://www.anu.edu.au/students/academic-skills/academic-
integrity)

Assessment

• All assignment deadlines are hard – no late submissions will be
accepted. Unless previous permission has been granted.
• Extension requests and late submissions require documentary

evidence, such as a medical certificate
• Regarding deferred assessments and special consideration, please

read: https://www.anu.edu.au/students/program-
administration/assessments-exams
• Please note that “any submitted work may be subject to an additional

oral examination”, which can change the assessment mark in any way.

https://www.anu.edu.au/students/program-administration/assessments-exams
https://www.anu.edu.au/students/program-administration/assessments-exams

Lecture Roadmap

• Intro to Programming
• Variables
• Functions

• The stack
• Scope

• Functional abstraction
• Branching/Flow control

• if
• while
• for

• Strings
• Lists
• Dictionaries

Functions
COMP1730/6730

Reading:
Chapter 3 : Downey, Think Python

Chapter 4: Sundnes, Into to Sci Prog with Python
OR

Sections 4.7 & 4.8: https://docs.python.org/3/tutorial/controlflow.html#defining-
functions

Functions (Think Python, Ch. 3)

• Functions are like mini-programs you can call from your code that do
useful, predefined tasks (that you would otherwise you might need to
do for yourself)
• We have already seen a few:

• str(0.1) converts a number (integer or float) to a string
• type(153)prints the variable type
• print(‘this’)takes a string input and prints it to the terminal

• In python, functions can be:
• Built-in
• Imported from modules
• User-defined

Built-in Python functions

• There LOTS of these. A very
necessary part of the language
• Go to the source documentation

for the Python language (at
python.org) and look through
what is available:

https://docs.python.org/3/library/functions.html

• Each function is described with
details of what it does, what
input it takes and what output it
produces

https://docs.python.org/3/library/functions.html

Example Built-in functions:
print(), len(), round(), input()

• As a useful exercise, go to the python.org documentation for built-in
functions and look these up

Example:

• Built-in functions:
• print()
• int()
• len()
• round()
• abs()

• More at https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Imported Functions
• These work a lot like built-in

functions, but need to be imported
first and called with reference to the
module they come from.
• Sometimes modules are referred to

as packages or libraries
• A full list of Python modules is

available at python.org:
https://docs.python.org/3/py-modindex.html
• Have a look at what is available – lots

of useful stuff, eg:

math json pickle
random statistics getopt
zlib pprint csv

https://docs.python.org/3/py-modindex.html

How to find out more

docs.python.org
are your friend

This often the best way
to find out how things
work – the docs written
by the developers.

If we scroll down this
page far enough, the
math.sin() is
mentioned, as well as
other useful things.

https://docs.python.org/3/library/math.html

• The functions available in modules would be rather annoying to have
to write from scratch each time: math.log10(), math.sin(), etc
• To use a particular module, one must first import it:

• Then to use the functions, one must use dot notation:

Module functions example: math

Downey (2015) Think Python, 2nd Ed.

Writing your own functions

• Why? If there are parts of your code that you use over and over in a
single program, it makes good sense to turn these into a helper
function:
• Shorter code
• Your code will be easier to read and understand
• And – the best reason – you only need to change your code in one place

when you modify it! It is annoying and very bug-prone to have to make the
same changes is multiple different places in your code

• Eventually, you will end up with a group of helper functions specific to your
own work. And you will end up using these over-and-over.

A simple, custom function
• Function definitions start with:

• the def keyword
• have a name followed by parentheses ()
• and a colon :

• First this is the definition line. It is followed by an indented code
block that does the work of the function:

• Functions are called by their name, with parentheses ()
• A function must always be defined before it is called

Lubanovic (2019) Introducing Python

Function definition

• A function definition consists of a name and a body (a block)
• The extent of the block is defined by indentation, which must be the same

for all statements of a block
• Standard indentation is 4 spaces

• This example has parameters
• Parameters are specified in the function call, and are passed to the code block

• A custom function must be defined before it can be called

Function parameters and return value

• Function (formal) parameters are (variable) names
• These variables can be used only in the function body

• Parameter values will be set only when the function is called
• return is a statement

• when executed, it causes the function call to end, and return the value of the
expression

A function call – with parameters

• To call a function, write its name followed by its (actual) arguments in
parentheses:

• The arguments are expressions
• Their number should match the parameters

• Though there can be exceptions – more about this later
• A function call is an expression

• The call in the example above is an expression that evaluates to the value
return’d by the function

Terminology: arguments and parameters

• Arguments are values that are passed to a function when it is called
• Say we make this function call:

• print(”ATGTAATAG”)
• print() is the function
• “ATGTAATAG” is the string argument passed to print()

• Parameters are what arguments become when inside the code block
within the function

Functions can call other functions

• This is what real-world code is doing all the time. Most code you will
write will use other functions to get things done

Function definition order
• A function must be defined before it is first called.
• Not like: Moved function

call to program
beginning

Order of evaluation

• The python interpreter always executes instructions one at a time in
sequence; this includes expression evaluation
• To evaluate a function call, the interpreter:

• First, evaluates the argument expressions one at a time, from left to right
• Then, executes the function body with its parameters assigned the values

returned by the arguments expressions

• Same with operators: first arguments (left to right), then the
operation

• Calling a function will interrupt the processive flow of program execution
• Calling a function causes the execution to skip to that function and

continue executing from that position

• Execution continues until the end of the function is reached (and it
returns to executing where the call was originally made)

Flow of execution

Concept: the call stack
• The ‘to-do list’ of where to come back to after each current function

call is called the (execution or call) stack
• When evaluation of a function call begins, the current instruction

sequence is put ‘on hold’ while the expression is evaluated – and the
function calls begin to ‘stack up’

• Graphically:

interact() interact()

ask_nam
e()

interact() interact()

print_gre
eting()

interact()

print_gre
eting()

calc_leng
th…()

interact()

print_gre
eting()

interact()

Reading: the call stack

• Covered in Think Python and Intro to Sci Prog with Python, but..

• A better introduction is in: Automate the Boring Stuff with Python,
Chapter 3, Section ‘The Call Stack’

• Remember: you have access to the Safari/O’Reilly bookstore through
the ANU library: https://www.oreilly.com/library-access/
• Search for ‘Automate the Boring Stuff with Python’

https://www.oreilly.com/library-access/

Example:

• The call stack
• Print statement debugger

None values
• Some variables contain nothing. Not zero. None means null,

nothing, undefined.
• None type:

• Not the same as zero:

• A void value. Just not defined. Some other languages have NULL
values.
• Why are NoneType values useful?

Downey (2015) Think Python, 2nd Ed., Ch 3

Functions withOUT return values

• One place you might encounter None is when a function has no
return statement
• If execution of a function reaches the end of the body without

encountering a return statement, the function call returns None

• Note: with iPython, or interactive mode with Spyder, the interpreter
does not print the return value of an expression when the value is
None.

Multiple return statements

• The return statement causes execution to leave the function block
and return to where a function call was made
• There can be multiple return statements in a single function

Lubanovic (2019) Introducing Python

The function docstring
• It is good practice to document your function with a docstring
• As simple as a sentence bound with ’’’

• A docstring is a string literal written as the first statement inside a
function’s body
• Acts like a comment, but accessible through the built-in help system
• Describe what the function does (if not obvious from its name) –

and its limits and assumptions

def change_in_percent(old, new):

 ’’’Return change from old to new, as a percentage of the old value.

 Old value must be non-zero.’’’

 return ((new – old) / old) * 100

Function calls are expressions

• In python, functions are also values: a function can be passed as
argument to another function.
• Example: We have a function to compute an approximation of the

derivative of a function at a point
• In calling this function, we can provide another function as an

argument:

Function debugging/testing

• A function is a unit of code:
• It encapsulates a task, requires specified input and provides as specified

output
• Allows a level of abstraction, wrapping complexity and allows

conceptualization

• A function has an interface:
• It requires certain input – a good function will throw an error if these are not

satisfied
• In turn, it will provide a promised output
• This is easily tested

Function testing
• A function makes a logical unit for

testing:
• Documented input requirements
• Expected output

• Testing can run a large variety of
cases to ensure correct input
produces expected output
• With lots of testing will identify

edge-cases - try a range of typical
input arguments:

• values equal to/less than/greater than
zero

• very large and small values
• values of equal and opposite signs

Suggested Exercises

• Complete Exercises 3-1, 3-2 and 3-3 of Think Python.
• And the Practice Project ‘The Collatz Sequence’ in Automate the

Boring Stuff with Python, at the end of Chapter 3

