Announcements) Academic honesty

- Australian < Australian

==/ National ==/ National

=7 Universit L =7 Universit
Y Submitted code will be checked computationally for evidence of plagiarism. Y

. . « If evidence of Flagiarism is found in individual homework problems, the mark for that individual homework will not be
e Labs begln this week posted, until all homeworks have been assessed. In the context of all homeworks if it is decided there is evidence of
repeated plagiarism, students will be interviewed for possible action of academic misconduct.

* Labs in computer labs (CSIT Building, Hanna Neumann Building)
* Have a computer for every student
* What is okay: for the homework, discussing the programming problems and approaches to solve them with other
* AISO' can use your own computer students is allowed, provided that no code%s exc?\angged and %h%t the final solugupon and code is written individually. In
this case, the other students involved in the discussion must be listed in a comment at the top of the homework.
* For the final exam and take-home assignment must be individual work. You may not discuss the questions or your

* The take-home assignment and exam will also be checked for evidence of academic misconduct.

* Labs in Marie Reay Building are Bring-Your-Own-Device (BYOD) labs

« Device == Laptop computer answers with anyone (this includes any on-line forum).
* Your device should have anaconda, python, etc installed * Note that in all cases every line of code submitted must be fully written by you from scratch (and not just a modified

) copy of a version from the internetz{ And must be fully understood and explainable by you. Sufficient inline comments
* Charge your battery before attending the lab should be provided to make clear that you understand the code.

* Note on large language models and other code generators:dgenerative Al models such as github copilot, chatGPT, Bing
chatbot etc can be used by students for the homeworks and take-home assignment to explore solutions an
understand their own code. They will not be allowed for the final exam. But in all cases the final code submitted by the
student must be fully written and understood by the student, as described above.

* If you are unsure, please ask your tutor or the convenors.

Academic Honesty — Policy: Fair use and acknowledgement

- Australian | Australian

<= National == National
<=7 University <=7 University
“ . V¥or)king on homework together and sharing the solution (even if you did half
of it

If we find evidence of cheating or copying of work, we will: “ . go?ying and pasting code or text from the internet (even if you changed it a
it

1. Review the potential copied work
¢ Talking to friends and classmates about questions
2. Raise a flag on the student work as ‘under investigation’ V ° N

3. Further evidence of cheating for a given student will result in all * You let a friend read your completed homework or assignment

homework and/or assignment marks being set to 0 for that student) g
* ChatGPT/CoPilot wrote the first draft, but | completely re-wrote the whole
document in my own words

V * You read programming books/websites and found examples where similar
problems were solved and then wrote my own text/program with this
knowledge (and you gave proper attribution to your sources).

Where to find more information

| Australian
== National

=7 University

¢ Academic Skills @ ANU (https://www.anu.edu.au/students/academic—skiIIs/academic—
integrity)

Academic integrity

Academic integrity is a core part of our culture as a community of scholars. At its heart, academic Book appointment
integrity is about behaving ethically. This means that all members of the community commit to
honest and responsible scholarly practice and to upholding these values with respect and fairness.

~ ¢ A et R

(NS f’ e —

&Y = ==
- |4 - Summarise multiple sources. Use sparingly

Multl stues have shown . ‘As Patol statos "
rteronce: eterance). rterence).

4 ways to use sources

Why it matters »

As scholars, we develop our ideas by
critically engaging with the work of..

Best practice principles »

Itis imperative that you understand the
academic integrity rules that...

Using sources »

Using the work of others in your
assignments is a required practice in the...

Lecture Roadmap

Australian

<= National
<=7 University

* Intro to Programming
* Variables

* Functions
¢ The stack
* Scope
* Functional abstraction
* Branching/Flow control
e if
* while
e for
* Strings
* Lists
* Dictionaries

- Australian

=

Assessment

| Australian
== National

=7 University

* All assignment deadlines are hard — no late submissions will be
accepted. Unless previous permission has been granted.

* Extension requests and late submissions require documentary
evidence, such as a medical certificate

* Regarding deferred assessments and special consideration, please
read: https://www.anu.edu.au/students/program-
administration/assessments-exams

* Please note that “any submitted work may be subject to an additional
oral examination”, which can change the assessment mark in any way.

Functions

COMP1730/6730

Reading:
Chapter 3 : Downey, Think Python
Chapter 4: Sundnes, Into to Sci Prog with Python

OR
Hﬁ.’&z’,‘;‘ty Sections 4.7 & 4.8: https://docs.python.org/3/tutorial/controlflow.html#defining-

functions

Functions (Think Python, Ch. 3)

| Australian
==/ National

=7 University

* Functions are like mini-programs you can call from your code that do
useful, predefined tasks (that you would otherwise you might need to
do for yourself)

* We have already seen a few:

* str(0.1) convertsanumber (integer or float) to a string

* type (153) prints the variable type

* print (‘this’) takes a string input and prints it to the terminal
* In python, functions can be:

* Built-in

* Imported from modules

* User-defined

Example Built-in functions:

print (), len(), round(), input() | Australion
S Unveraty

* As a useful exercise, go to the python.org documentation for built-in
functions and look these up

(>>>

>>> print('Some text here')
Some text here

>>> len('Some text here')
14

>>> round(1.1)

1

>>> round(1.9)

2

>>> input_string = inputQ
here is something I typed
>>> print(input_string)
here is something I typed
>>>

Built-in Python functions

* There LOTS of these. A very
necessary part of the language

* Go to the source documentation
for the Python language (at
python.org) and look through
what is available: —_—

https://docs.python.org/3/library/functions.html

* Each function is described with
details of what it does, what
input it takes and what output it
produces

Example:

Built-in Functions

abs() enumerate()
aiter() eval()
all() exec()
any()
anext() F
ascii() filter()
float()
B format()
bin() frozenset()
bool()
breakpoint() G
bytearray() getattr()
bytes() globals()
C H
callable() hasattr()
chr() hash()
classmethod() help()
compile() hex()
complex()
I
D id()
delattr() input()
dict() int()
dir() isinstance()
divmod() issubclass()

iter()

L

len()
list()
locals()

M

map()

max()
memoryview()
min()

next ()

o
object()
oct()
open()
ord()

P
pow()
print()
property()

* Built-in functions:
* print()
* int()
* len()
* round()
* abs()

* More at https://docs.python.org/3/library/functions.html

Australian
National
University

R

range()
repr()
reversed()
round()

S

set()
setattr()
slice()
sorted()
staticmethod()
str()

sum()

super()

T
tuple()
type()

vars()

z
zip()

~_import__()

Australian
National
University

Imported Functions

<= National

=7 University
* These work a lot like built-in
functions, but need to be imported Python Module Index
firs’aarlwd challed withfreference O the L L ciaieiiorn i riimntoln alrisilalelwiels
module they come from.)

* Sometimes modules are referred to

. . __future__ Future statement definitions
as packages or libraries Zain_ The environment where top-level code is run. Covers command-Iine
interfaces, import-time behavior, and " °_name__ =="'_main_""".
° A fu” ||St Of Python modules iS _thread Low-level threading API.
available at python.org: g
> abc Abstract base classes according to :pep: 3119
https://docs.python.org/3/py-modindex.html aifc Deprecated: Read and write audio files in AIFF or AIFC format.
. A argparse Command-line option and argument parsing library.
* Have a look at what is available — lots array Space efficient arrays of uniformly typed numeric values.
. ast Abstract Syntax Tree classes and manipulation.
of useful stuff, eg: Deprecate uppert for asyehronous command/response procas.
asyncio Asynchronous 1/0.
asyncore A base class for socket handling

services.
Register and execute cleanup functions.

pickle atexit

math json
audioop Deprecated: Manipulate raw audio data.
getopt

random statistics

b

| R b R t base64 RFC 4648: Base16, Base32, Base64 Data Encodings; Base85 and Ascii§5
Zll pprin Ccsv o Debugger framework
binascii Tools for converting between binary and various ASCli-encoded binary
representations.

Module functions example: math R

<= National
<=7 University

* The functions available in modules would be rather annoying to have
to write from scratch each time: math.1og10 (), math.sin (), etc

* To use a particular module, one must first import it:
>>> import math

* Then to use the functions, one must use dot notation:

>>> ratio = signal_power / noise_power

>>> decibels = 10 * math.loglO(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

Downey (2015) Think Python, 2" Ed.

How to find

out more

Australian
==/ National

docs.python.org
are your friend

This often the best way
to find out how things
work — the docs written
by the developers.

If we scroll down this
page far enough, the
math.sin () is
mentioned, as well as
other useful things.

=7 University
https://docs.python.org/3/library/math.html

@ python » (Engish <) (3112~ 3.11.2 Documentation » The Python Standard Library » Numeric and Mathematical Modules » math — Mathematical functions

nath. hypot (scoordinates)

Return the Euclidean norm, sqrt(sun(x+#2 for x in coordinates)). This is the length of the
Table of Contents vector from the origin to the point given by the coordinates.
nath — Mathematial
functions For a two dimensional point (x, y), this is equivalent to computing the hypotenuse of a right
* Number- theoretic and triangle using the Pythagorean theorem, sqrt(x#x + yky).
Changed in version 3.8: Added support for n-dimensional points. Formerly, only the two
dimensional case was supported.
Changed in version 3.10: Improved the algorithm’s accuracy 5o that the maximum error is under 1
ulp (unit in the last place). More typically, the result is almost always correctly rounded to within
1/2 ulp

« Constants .
math.sin(x)
Previous topic Return the sine of x radians.

numbers — Numeric
abstract base classes math. tan(x)
Return the tangent of x radians.
Next topic
o femetet! - Angular conversion

nath.degrees (x)
This Page Convert angle x from radians to degrees.

Report a Bug .
math. radians (x)

Convert angle x from degrees to radians.

Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of
circles.

math.acosh(x)
Return the inverse hyperbolic cosine of .

Writing your own functions

== National

<=7 University

* Why? If there are parts of your code that you use over and over in a
single program, it makes good sense to turn these into a helper

function:
* Shorter code

* Your code will be easier to read and understand

* And —the best reason — you only need to change your code in one place
when you modify it! It is annoying and very bug-prone to have to make the
same changes is multiple different places in your code

* Eventually, you will end up with a group of helper functions specific to your
own work. And you will end up using these over-and-over.

A simple, custom function

Australian

==/ National

=7 University
* Function definitions start with:
* the def keyword
* have a name followed by parentheses ()
* and a colon :

* First this is the definition line. It is followed by an indented code
block that does the work of the function:

>>> def make_a_sound():

print('quack')
>>> make_a_sound()
quack

Lubanovic (2019) Introducing Python

* Functions are called by their name, with parentheses ()
* A function must always be defined before it is called

Function parameters and return value

Australian

== National
University

parameters
def change_in_percent (old, new):
diff = new - old
return (diff / old) = 100

* Function (formal) parameters are (variable) names
* These variables can be used only in the function body
* Parameter values will be set only when the function is called

* return is a statement

* when executed, it causes the function call to end, and return the value of the
expression

Function definition

Australian

—==/ National

=7 University

name

def change_in_percent (old, new):

S:ws iff = new - old block
P lreturn (diff / old) * 100

* A function definition consists of a name and a body (a block)

* The extent of the block is defined by indentation, which must be the same
for all statements of a block
* Standard indentation is 4 spaces
* This example has parameters
* Parameters are specified in the function call, and are passed to the code block

* A custom function must be defined before it can be called

A function call — with parameters

Australian

== National
University

* To call a function, write its name followed by its (actual) arguments in
parentheses:

>>> change_in_percent (489, 556)
13.701431492842536

* The arguments are expressions

* Their number should match the parameters
* Though there can be exceptions — more about this later
* A function call is an expression

* The call in the example above is an expression that evaluates to the value
return’d by the function

Terminology: arguments and parameters .

==/ National

=7 University

* Arguments are values that are passed to a function when it is called

* Say we make this function call:
* print ("ATGTAATAG”)
* print () isthe function
* “ATGTAATAG” isthe string argument passed toprint ()
* Parameters are what arguments become when inside the code block
within the function

Function definition order R

—=.| National
=7 University

* A function must be defined before it is first called.
. interact() Moved function
* Not like: P call to program
[Please enter your name: ") . .
name = input() beginning

tring(the_string):

ing(input_name) :
calculate_length_of_string(input_name)
“+ input_name + “.” Your name is " + str(name_length) + " characters in length.")

interaction_name = ask_name()
print_greeting(interaction_name)

O X console 1A

In [164]: runfile('/User. op/untitledd.py’, wdir='/Users/dan/Desktop')
Traceback (most recen la

File
exec(code, globals, locals)

File "/Users/dan/Desktop/untitled.py”, line 1, in
interact()

name 'interact' is not defined

Functions can call other functions R

==/ National

=7 University
* This is what real-world code is doing all the time. Most code you will

write will use other functions to get things done

orin ease enter your name: ")
ame = input ()

irn name

calculate_length_of_string(input_name)
"+ input_name + “._ Your name is " + str(name_length) + “ characters in length.")

def interact():
interaction_name = ask_name()
print_greeting(interaction_name)

interact()

O X console 1A

In [163]: runfile('/Users/dan/Desktop/untitledd.py’, wdir="'/Users/dan/Desktop’)
Please enter your name:

Dan

Hello, Dan. Your name is 3 characters in length.

In [164]: |

Order of evaluation - raton

—=.| National
= University

* The python interpreter always executes instructions one at a time in
sequence; this includes expression evaluation
* To evaluate a function call, the interpreter:
* First, evaluates the argument expressions one at a time, from left to right
* Then, executes the function body with its parameters assigned the values
returned by the arguments expressions
* Same with operators: first arguments (left to right), then the
operation

Flow of execution .
= fanena,

* Calling a function will interrupt the processive flow of program execution

* Calling a function causes the execution to skip to that function and
continue executing from that position

def ask_name():
print("Please enter your name: ")
inp

culate_length_of_string(input_name)
input_name + “.” Your name is " + str(name_length) + “ characters in length.")

)_name = ask_name ()
reeting(interaction_name)

* Execution continues until the end of the function is reached (and it
returns to executing where the call was originally made)

Reading: the call stack

@ National
<=7 University

* Covered in Think Python and Intro to Sci Prog with Python, but..

* A better introduction is in: Automate the Boring Stuff with Python,
Chapter 3, Section ‘The Call Stack’

* Remember: you have access to the Safari/O’Reilly bookstore through
the ANU library: https://www.oreilly.com/library-access/
* Search for ‘Automate the Boring Stuff with Python’

Concept: the call stack

==/ National

L i

=7 University

* The ‘to-do list’ of where to come back to after each current function
call is called the (execution or call) stack

* When evaluation of a function call begins, the current instruction
sequence is put ‘on hold’ while the expression is evaluated — and the
function calls begin to ‘stack up’ ‘ e

* Graphically:

Exa m p | e : - Australian

<= National

=7 University

* The call stack
* Print statement debugger

None values

Australian
National
University

* Some variables contain nothing. Not zero. None means null,
nothing, undefined.

* None type:

>>> print(type(None))
<class 'NoneType'>

Downey (2015) Think Python, 2" Ed., Ch 3

* Not the same as zero:

none_var = None

>>> none_var == @
False

* Avoid value. Just not defined. Some other languages have NULL
values.

* Why are NoneType values useful?

Multiple return statements

Australian
National
University

* The return statement causes execution to leave the function block
and return to where a function call was made

* There can be multiple return statements in a single function

>>> def commentary(color):
if color == 'red':
return "It's a tomato."
elif color == "green":
return "It's a green pepper."
elif color == 'bee purple':
return "I don't know what it is, but only bees can see it."
else:

return "I've never heard of the color " + color +

Lubanovic (2019) Introducing Python

Functions withOUT return values

Australian
National
University

* One place you might encounter None is when a function has no
return statement

* If execution of a function reaches the end of the body without
encountering a return statement, the function call returns None

* Note: with iPython, or interactive mode with Spyder, the interpreter
does not print the return value of an expression when the value is
None.

The function docstring

Australian
National
University

* |t is good practice to document your function with a docstring
* As simple as a sentence bound with ’ 7 /

def change in percent(old, new):
’’’Return change from old to new, as a percentage of the old value.
0ld value must be non-zero.’’’

return ((new - old) / old) * 100

* A docstring is a string literal written as the first statement inside a
function’s body
* Acts like a comment, but accessible through the built-in help system

* Describe what the function does (if not obvious from its name) —
and its limits and assumptions

Function calls are expressions

Australian

==/ National
=7 University

* In python, functions are also values: a function can be passed as
argument to another function.

* Example: We have a function to compute an approximation of the
derivative of a function at a point

* In calling this function, we can provide another function as an
argument:

def derivative(f, x, d):
return (f(x + d) - f(x - d)) / (2%d)

ans = derivative (math.sin, math.pi/4, 0.1)

Function testing

Australian
National

University

* A function makes a logical unit for
testing:

Function debugging/testing

Australian

—==/ National

=7 University

¢ A function is a unit of code:

* It encapsulates a task, requires specified input and provides as specified
output

* Allows a level of abstraction, wrapping complexity and allows
conceptualization
* A function has an interface:

* It requires certain input — a good function will throw an error if these are not
satisfied

* In turn, it will provide a promised output
* This is easily tested

Suggested Exercises

| Australian
== National

* Documented input requirements
* Expected output

>>> change_in percent (1, 2)

100.0
* Testing can run a large variety of >>> change-inpercent (2, 1)
cases to ensure correct input ;ig Oh , ca 1
produces expected output o>y changeinpercent(l, 1)
* With lots of testing will identify >Zgocgaﬂgefi“¥erce“t (I, =1)
_edge-cases - try a range of typical >>> change_in.percent (0, 1)
|npUt arguments: ZeroDivisionError

values equal to/less than/greater than

zero
very large and small values
values of equal and opposite signs

University

* Complete Exercises 3-1, 3-2 and 3-3 of Think Python.

* And the Practice Project ‘The Collatz Sequence’ in Automate the
Boring Stuff with Python, at the end of Chapter 3

