Revision: Function definition

Australian
National
University

name

def change_in percent (old, new):
s:ces 1ff = new - old block
P Seturn (diff / old) * 100

A function definition consists of a name and a body (a block)

* The extent of the block is defined by indentation, which must be the same
for all statements of a block

e Standard indentation is 4 spaces

* This example has parameters
» Parameters are specified in the function call, and are passed to the code block

e A custom function must be defined before it can be called

Revision: Function parameters and return
Va | u e Australian

National
University

pararrjeters
def change_in_percent (old, new):
diff = new - old
return (diff / old) = 100

e Function (formal) parameters are (variable) names

* These variables can be used only in the function body
e Parameter values will be set only when the function is called
* return is a statement

* when executed, it causes the function call to end, and return the value of the
expression

Revision: Flow of execution

+ Australian

'\4\\', National
=~ University

 Calling a function will interrupt the processive flow of program execution

 Calling a function causes the execution to skip to that function and
continue executing from that position

def ask_name():

d

af

print("Please enter your name: ")
name = dinput()
return neme

>f calcullate_length_of_string(the_string):

returh len(the_strina)

>f print_greeting(input_namej+:
name_Llengty = calculate_length_of_string(input_name)
print("Hello, " + iaput_name + ". Your name is " + str(name_length) + " characters in length.")

interagt():
intaraction_name = ask_name()
priit_greeting(interaction_name)

interact()

* Execution continues until the end of the function is reached (and it
returns to executing where the call was originally made)

Revision: the call stack

== National
=7 University

* The ‘to-do list” of where to come back to after each current function
call is called the (execution or call) stack

* When evaluation of a function call begins, the current instruction
sequence is put ‘on hold” while the expressmn is evaluated — and the

function calls begin to ‘stack up’

lculate_length_of_string(the_string):
irn len(the_string)

1t_greeting(input_name):
= calculate_length_of_string(input_name
4 lo, "+ i t_name + ". Your name is " +

* Graphically:

Intro to Scope

COMP1730/3730

Chapter 3 : Sweigart, Automate the boring stuff with Python,

Or
Nanoaat” Section 9: https://docs.python.org/3/tutorial/classes.html#python-

Universit
niversity Scopes_and-namespaces

Reading: Scope

National
University

e Covered in Think Python and ItSPwP, but..

* A better introduction is in: Automate the Boring Stuff with Python,
Chapter 3, from Section ‘Local and Global Scope’ until the end of the

chapter

 Remember: you have access to the Safari/O’Reilly bookstore through
the ANU library: https://www.oreilly.com/library-access/
e Search for ‘Automate the Boring Stuff with Python’

https://www.oreilly.com/library-access/

Scope - Sweigart, Automate the Boring Stuff with Python, Ch 3

Australian
National
University

* We haven’t talked yet about scope — this is important

» So far, we have assumed that all defined variables are accessible all
the time — this is known as global scope

* But global scope becomes hazardous as:
e A program gets larger

* Includes code that comes from other developers (you might both use the
same variable name)

* The parameter variables within a single function are local to the code
block. If you try to access one of these outside the function code
block, you will get an error.

Graphically:

X scope.py

def print_gene():
gene_name = 'p53'
print(‘'In print_gene: ' + gene_name)

def print_protein():
protein_id = 'TP53'
gene_name = ‘Unknown'’
print('In print_protein: ' + protein_id + ' ' + gene_name)

gene_name = 'BRCAZ'
print_gene()

print(‘In main:
print_protein()

1

+ gene_name)

Output:

In print_gene: p53
In main: BRCA2

In print_protein: TP53 Unknown

Australian
National
University

Program: scope.py

Global

gene name = ‘BRCA2’

Function: print_gene()

Local

gene name = ‘p53’

Function: print_protein()

Local

protein id = ‘TP53’
gene name = ‘Unknown’

Within a function, parameters are local

National
University

e Variables created/assigned in a function (including parameters) are

local to that function:
* Local variables have scope limited to the enclosing block
* The interpreter uses a new namespace for each function call

* Local variables that are not parameters are undefined before the first
assignment in the function body. Then remain local to the function block

e Variables with the same name used outside the function are unchanged after
the call

* Within a function, you can still access variables in the global scope

* But, within function local scope, you cannot access the local scopes
of other functions

Scope - why?

National
University

* There are very good reasons why every section of code should not be
able to access the variables controlled by other sections.
* For one thing, as your program gets bigger, the namespace of the program
will start to get crowded.
* You might be using the same variable name for two different things.

* If you are using code from other developers (like importing functions), they
might be using the same variable names as your program — but for different
things

* |t makes good sense to compartmentalise variable scope, to avoid
namespace-collisions

The call stack

- Australian
==/ National
=7 University

—

import math
2 def deg_to_rad(x) :

3 def sin_of_deg(x) :

4 ans=sin_of.deg(23)
5 x_in_rad=deg.-to._rad(23)
|6 return 23*math.pi/180
7 x_.in.rad=0.4014
8 return math.sin(0.4014)
9 ans = 0.3907
10 print (ans)

stack depth

The call stack and scope

%] Australian

<=/ National
=~ University

Global f rane/.—y module instance
math

function
deg_to_rad I_O/ﬂdeg_to_rad(x)
sin_of deg I— function
sin_of deg(x)

(Image from pythontutor.com)

The call stack and scope

<=/ National
=7 University

Global frame > module instance
math \:)function

deg_to_rad | deg to rad(x)
sin_af g \: , function

sin _of deg(x)
sin_of deg

(Image from pythontutor.com)

The call stack and scope

<=/ National
=7 University

Global frame > module instance
math \:)function
deg_to_rad |- deg to rad(x)
sin_of_deg _- o
sin_of deg(x)
sin_of_deg
deg to rad
x |23
Return
vae 04014

(Image from pythontutor.com)

The call stack and scope

=] Australian
==/ National
=~ University

Global frame > module instance
math L. »function
deg_to_rad L ~deg_to rad(x)
sin_of_deg L’ function

sin_of deg(x)
sin_of _deg

X |23
x_in_rad 0.4014

Return
e 0.3907

(Image from pythontutor. com)

The call stack and scope

%] Australian

<=/ National
=~ University

Global frame /——rmodule instance
math |_ function

deg_to_rad « Tdeg to rad(x)

sin_of_deg |_._\function

answer 0.3907 sin of deg(x)

(Image from pythontutor.com)

Functional Abstraction

COMP1730/6730

Think Python Ch 4 (Encapsulation, Generalization, Interface Design) and
Ch 6 (Leap of Faith)

Australian
National
University

Abstraction & Interfaces

Australian
National
University

* Imagine if when we write very large programs, that we needed to
understand every line of code that our code is built on?
* |t would be terrible! Nothing complicated could get done easily. Slow!

* In the first lecture, you saw how to open a file and train a basic ML
model

* General understanding is necessary (yes!), but detailed understanding
of the implementation is not

* We rely on abstraction of details

* We implement code and software libraries that only require an
understanding of the interface

 When we write functions, we should make them intuitive to
provide this interface

Interfaces (Think Python, Ch. 4)

National
University

* Providing a simple interface to a complex task is the great value of
software libraries. Other people write code that you don’t know in
detail — but you can do the same tasks, with much less effort.

» Before long, you will be writing code where you didn’t look at every
line of the functions and libraries that you rely on.

* Ch 6 of Think Python calls this the ‘Leap of faith’:

Leap of Faith

Following the flow of execution is one way to read programs, but it can quickly
become overwhelming. An alternative is what I call the “leap of faith”. When you

come to a function call, instead of following the flow of execution, you assume

that the function works correctly and returns the right result.

* This is abstraction. Much of the detail in your software remains
abstract. You are now thinking about code at a higher level.

== National

=~ University

More complicated: Python as a toolbox ...

rt pandas as pd
seaborn as sns
from sklearn.tree import DecisionTreeRegressor
mutations = pd.read_csv('/Users/dan/Desktop/Envision_manuscript_data/Gray_etal_SupplementaryTable S2_cleaned.csv"')

mutation_metrics = [“Residual Function", "Solvent_Accessibility", "B _Factor"]

sns.lmplot(x="Solvent_Accessibility", y="B Factor", data=mutations, fit_reg=False, hue='Mutation Cat', legend=True, markers='.', x_jitter=True, y_jitter=True)

X = mutations.iloc[0@:, [26, 30]].values # 26 == Solvent_Accessibility, 30 == B_Factor
y = mutations.iloc[@:,[6]].values # 6 is 'Mutation_Cat'

tree_clf = DecisionTreeRegressor(max_depth=2)
tree_clf.fit(X, y)

Solvent_Accessibility: 91%

B—factor: 187 (high, +ve)

prediction = tree_clf.predict([[2, ©.99]])

print("“Residual function prediction: " + str(prediction[0]))

=]
‘D’ .
g 1 Mutation_Cat
o' e 1
2
O <4
In [162]: runfile('/Users/dan/Desktop/second_example_v@.2.py"', wdir="'/Users/dan/Desktop")
Residual function prediction: 1.2415158371040724
-1
In [163]:
_2 R

-10 -05 0.0 05 10 15 20
Solvent_Accessibility

Turtle graphics

Python Turtle Graphics

https://docs.python.org/3/library/turtle.html

Table of Contents

turtle — Turtle
graphics
= Introduction
= Tutorial
= Starting a turtle
environment
= Basic drawing
= Pen control
= The turtle’s
position
= Making
algorithmic
patterns
= How to...
= Get started as
quickly as
possible
= Use the turtle
module
namespace
= Use turtle
graphics in a
script
= Use object-
oriented turtle
graphics
= Turtle graphics
reference
= Turtle methods
= Methods of
TurtleScreen/
Screen
= Methods of
RawTurtle/Turtle
and corresponding
functions
= Turtle motion
= Tell Turtle’s
state

= Sattinge for

turtle — Turtle graphics

Source code: Lib/turtle.py

Introduction

Turtle graphics is an implementation of the popular geometric drawing tools introduced in Logo, de-
veloped by Wally Feurzeig, Seymour Papert and Cynthia Solomon in 1967.

In Python, turtle graphics provides a representation of a
physical “turtle” (a little robot with a pen) that draws ona Turtle star

sheet of paper on the floor. o .
Turtle can draw intricate shapes using

It's an effective and well-proven way for learners to en- programs that repeat simple moves.
counter programming concepts and interaction with
software, as it provides instant, visible feedback. It also
provides convenient access to graphical output in gen-
eral.

Turtle drawing was originally created as an educational
tool, to be used by teachers in the classroom. For the
programmer who needs to produce some graphical out-
put it can be a way to do that without the overhead of in-

troducing more complex or external libraries into their
work.

Tutorial

New users should start here. In this tutorial we’ll explore some of the basics of turtle drawing.

Luke Taylor, from https://www.youtube.com/watch?v=lyqTY4q16iw

Abstraction —a drawing example

Australian

 Let’s draw a shape - a square.

Python Turtle Graphics

* Boring, processive, repetitive code.

0 Console 2/A
Python 3.9.13 (main, Aug 25 2022, 18:29:29)

Type "copyright", "credits" or "license" for more
information.

IPython 8.15.0

In

In

In

In

In

In

In

In

In

In

: import

: turtle.
: turtle.
: turtle.
: turtle.
: turtle.
: turtle.
: turtle.

: turtle

== National
=~ University

L

—— An enhanced Interactive Python.
turtle

forward(100)

right(90)

forward(100)

right(90)

forward(100)

right(90)

forward(100)

. right(90)

IPython Console History

Code_L4 1.py

Drawing shapes — a square

== National
=~ University

* By writing a draw_square function, we can encapsulate the
complexity individual drawing commands.

* And we can add parameters

import turtle

def draw_square(side_dim):

'""'"Draws a square of side length defined by side_dim'"''
turtle. forward(side_dim)

turtle.right(90)

turtle. forward(side_dim)

turtle.right(90)

turtle. forward(side_dim)

turtle.right(90)

turtle. forward(side_dim)

turtle.right(90)

draw_square(100)

|
Code_ L4 2.py

Australian

Drawing a bigger structure with functions

* Write another function to draw
multiple squares to make a grid

* Parameters to give size and number

of cells:

import turtle

def draw_square(side_dim):

''"'Draws a square of side length defined by side_dim'''
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.
turtle.

forward(side_dim)
right(9e)
forward(side_dim)
right(90)
forward(side_dim)
right(9e)
forward(side_dim)
right(90)

draw_grid(cells, side_dim):
'"'Draws a grid of squares'''

draw

grid

for i in range(cells):

draw a row of cells
for j in range(cells):

draw_square(side_dim)
turtle.forward(side_dim)

move to next row beginning
turtle.penup()
turtle.right(180)
turtle.forward(side_dimxcells)
turtle.left(90)

turtle. forward(side_dim)
turtle.left(90)
turtle.pendown()

draw_grid(3,100)

Python Turtle Graphics

\ National
=~ University

Code_L4 3.py

Abstract functions allow easy extensibility ,

|~4\\'/ National
=~ University

 What if we now need to draw each
cell as a circle —there is a function for
turtle.circle () :

Python Turtle Graphics

def draw_grid(cells, side_dim, draw_shape, adjust=1):

draw grid
for i in range(cells):

draw a row of cells

for j in range(cells):
turtle.pendown()
draw_shape(side_dim)
turtle.penup()
turtle.forward(side_dimxadjust)

move to next row beginning
turtle.penup()

turtle. left(180)

turtle. forward(side_dimxcells*adjust)
turtle. left(90)

turtle. forward(side_dimxadjust)
turtle.left(90)

turtle.pendown ()

#draw_grid(3, 40, draw_square, 1) Code_L4 4.py
draw_grid(3, 40, turtle.circle, 2) - -

Example: The Robot

=/ Australian
=/ National
=7 University

* |t can:

* Lift mechanical arms up and down
* Move * Sense position
* Grip boxes * Be driven by a python code library

Things the robot does:

-] Australian

== National
=7 University

* Move Ieft/rlght along a shelf with boxes on it:
e //»,’/ ‘

Open and close the gripper:

-:| Australian
==/ National
=7 University

Folded Open Closed

* When moving along the shelf of boxes, the gripper needs to be folded
to avoid hitting the boxes

* Folding and unfolding the gripper may hit boxes, so important to lift
the gripper up first

A look at a Robot

f‘l"\ L

CIass.
e This is the RPCRobot class

that can be found in
robot.py from the labs

Class RPCRobot
Global attribute defaults
* 1init method
Methods:

e li1ft up

* 1ift down

* drive right

* Etc...

class RPCRobot:

'"'Robot class interfacing with ev3 via RPYC.'''
DEFAULT_DRIVE_RIGHT = 575

DEFAULT_DRIVE_LEFT = 600

DEFAULT_LIFT_UP = 220

DEFAULT_LIFT_DOWN = 200

def __init_ (f, ip_address = "192.168.0.1")
import rpyc

=
.rpcconn = rpyc.classic.connect(ip_address) =
pcconn.modules.ev3dev.ev3
[f.ev3.PowerSupply()
.ev3.LargeMotor('outB"’)
ev3.LargeMotor(‘outD")
.ev3.MediumMotor('outC")
ev3.ColorSensor()
ev3.InfraredSensor()

.gripper
.sensor

def print_state(4
print(“drive at " + str(
print(”lift at " + str
print(“gripper at " + str f.gripper.position))
print(“sensor read: " + str(self.sensor.value()))
print(“proxor read: " + str proxor.value()))
print(“battery: " + str(s .battery.measured_volts) + "V, "

+ str(f.battery.measured_amps) + "A")

rive.position))
lift.position))

moving up doesn't require braking
def lift_up(distance=DEFAULT_LIFT_UP):
print(“1ift at " + str(s .lift.position)
+ ", speed " + str(self.lift.speed))
: . lift.run_to_rel_pos(position_sp = -distance, duty_cycle_sp = -25)
time.sleep(0.5)
while abs(s 5
print("1 lift.position)
+ . lift.speed))
time.sleep(0.25)
print(“(end) lift at " + str
+ ", speed " + str(

ift.position)
lift.speed))

moving down r ires braking, and even then has to be commanded ~10 short
def lift_down(self, distance=DEFAULT_LIFT_DOWN):
print("“1ift at " + str(self.lift.position)
+ ", speed " + str(self.lift.speed))
. lift.run_to_rel_pos(position_sp = distance,
duty_cycle_sp = 25,
stop_command='brake")
time.sleep(0.5)
while abs . lift.speed) > 0:
print("lift at " + str(
+ ", speed " + str
time.sleep(0.25)
print(“(end) lift at " + str
+ ", speed " + str(sel

. lift.position)
lift.speed))

def drive_right(self, distance
print(“drive at " + str(s
+ ", speed " + str(f.drive.speed))
.drive.run_to_rel_pos(position_sp = distance,
duty_cycle_sp = 50,
stop_command='hold")

DEFAULT_DRIVE_RIGHT):

time.sleep(0.5)

Australian
National

=7 University

The Robot Simulator

Australian
National
University

= Robot Simulator - 0 x

The box sensor

The gripper
(closed)

The shelf

The robot library

Australian
National
University

>>> 1mport robot

Start new simulation:
>>> robot.init ()

Start simulation with larger area:
>>> robot.init (width = 11, height = 6)

Start simulation with random boxes:

>>> robot.init (width = 11, height = 6,
boxes = "random")

Drive right/left one step:

>>> robot.drive_right ()
>>> robot.drive_left ()

The robot library

Australian
National
University

Move the lift up one step:
>>> robot.lift_up/()

Move the lift down one step:
>>> robot.lift_down ()

Change gripper position:

>>> robot.gripper_to_open ()
>>> robot.gripper_to._closed()
>>> robot.gripper_to_folded()

*x If the robot hits a box, no

command works until a new >< - ® .
simulation is started.

How to pick up a box?

.| Australian

== National
=~ University

| . HoN
* How to pick up a box without °
hitting the box(es) next to it? H B
robot.lift up/() ®
robot .gripper_to_open () BB
robot.lift _down ()
robot.gripper_to_closed() B |
robot.lift _up/()
* A program is a sequence of BN
instructions. e
]

How to build a tower of boxes?

Australian

@

I
!O
!o

robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot

robot.
.drive_right ()

Adift up()
.gripper_to_open ()
.1ift_down ()
.gripper_to_closed()
Adift up()
.drive_right ()
.drive_right ()
.gripper_to_open ()
.1ift_down ()
.gripper_to_closed()
Ldift up()
.drive_right ()
.drive_right ()
.gripper_to_open ()
.1ift_down ()

== National
=7 University

init (width = 7, boxes = "flat")

 This quickly gets very tedious!

Abstraction with functions

Australian
National
University

* We only need to know what a function does. We don’t need to know

how it does it:

def grasp box_on_shelf():

4

robot

gpacegrobot

robot
robot

robot.

1ift up ()

.gripper_to_open ()
.1ift_down ()
.gripper_to_closed()
1ift up ()

* And the idea is, there is a high-level function to do all the necessary

tasks:

def release_and_pickup_next () :

robot.gripper_to_open ()
robot.lift_down ()
robot.gripper_to_closed()
robot.lift up()

How to build a tower of boxes?

HeP B ~
%

HeR B B
_>

_C>
!O
!o

National
University

robot.init (width = 9, boxes = "flat")

robot.drive_right ()
grasp-box_on_shelf ()
move_to_next_stack ()
release_and pickup_next ()
move_to_next_stack ()
release_and_pickup_next ()
move_to_next_stack ()
release_and pickup_next ()
move_to_next_stack ()
robot.gripper_to_folded()
robot.lift_down ()

* Much better!
* And you needn’t stop there:
build tower () ?

Exe rC I SeS Australian

National
University

* Exercises in this week’s practical lab

Reading

Think Python Ch 4 (Encapsulation, Generalization, Interface Design) and
Ch 6 (Leap of Faith)

