
Revision: Function definition

• A function definition consists of a name and a body (a block)
• The extent of the block is defined by indentation, which must be the same

for all statements of a block
• Standard indentation is 4 spaces

• This example has parameters
• Parameters are specified in the function call, and are passed to the code block

• A custom function must be defined before it can be called

Revision: Function parameters and return
value

• Function (formal) parameters are (variable) names
• These variables can be used only in the function body

• Parameter values will be set only when the function is called
• return is a statement

• when executed, it causes the function call to end, and return the value of the
expression

• Calling a function will interrupt the processive flow of program execution
• Calling a function causes the execution to skip to that function and

continue executing from that position

• Execution continues until the end of the function is reached (and it
returns to executing where the call was originally made)

Revision: Flow of execution

Revision: the call stack
• The ‘to-do list’ of where to come back to after each current function

call is called the (execution or call) stack
• When evaluation of a function call begins, the current instruction

sequence is put ‘on hold’ while the expression is evaluated – and the
function calls begin to ‘stack up’

• Graphically:

interact() interact()

ask_nam
e()

interact() interact()

print_gre
eting()

interact()

print_gre
eting()

calc_leng
th…()

interact()

print_gre
eting()

interact()

Intro to Scope
COMP1730/3730

Chapter 3 : Sweigart, Automate the boring stuff with Python,
Or

Section 9: https://docs.python.org/3/tutorial/classes.html#python-
scopes-and-namespaces

Reading: Scope

• Covered in Think Python and ItSPwP, but..

• A better introduction is in: Automate the Boring Stuff with Python,
Chapter 3, from Section ‘Local and Global Scope’ until the end of the
chapter

• Remember: you have access to the Safari/O’Reilly bookstore through
the ANU library: https://www.oreilly.com/library-access/
• Search for ‘Automate the Boring Stuff with Python’

https://www.oreilly.com/library-access/

Scope - Sweigart, Automate the Boring Stuff with Python, Ch 3

• We haven’t talked yet about scope – this is important
• So far, we have assumed that all defined variables are accessible all

the time – this is known as global scope
• But global scope becomes hazardous as:

• A program gets larger
• Includes code that comes from other developers (you might both use the

same variable name)

• The parameter variables within a single function are local to the code
block. If you try to access one of these outside the function code
block, you will get an error.

Graphically:

Global

gene_name = ‘BRCA2’

Program: scope.py

Output:

Local

gene_name = ‘p53’

Function: print_gene()

Local

protein_id = ‘TP53’
gene_name = ‘Unknown’

Function: print_protein()

Within a function, parameters are local

• Variables created/assigned in a function (including parameters) are
local to that function:
• Local variables have scope limited to the enclosing block
• The interpreter uses a new namespace for each function call
• Local variables that are not parameters are undefined before the first

assignment in the function body. Then remain local to the function block
• Variables with the same name used outside the function are unchanged after

the call

• Within a function, you can still access variables in the global scope
• But, within function local scope, you cannot access the local scopes

of other functions

Scope - why?

• There are very good reasons why every section of code should not be
able to access the variables controlled by other sections.
• For one thing, as your program gets bigger, the namespace of the program

will start to get crowded.
• You might be using the same variable name for two different things.
• If you are using code from other developers (like importing functions), they

might be using the same variable names as your program – but for different
things

• It makes good sense to compartmentalise variable scope, to avoid
namespace-collisions

The call stack

import math

Convert degrees to radians

def deg_to_rad(x):

 return x * math.pi / 180

Take sin of an angle in degrees

def sin_of_deg(x):

 x_in_rad = deg_to_rad(x)

 return math.sin(x_in_rad)

ans = sin_of_deg(23)

print(ans)

The call stack and scope

import math

Convert degrees to radians

def deg_to_rad(x):

 return x * math.pi / 180

Take sin of an angle in degrees

def sin_of_deg(x):

 x_in_rad = deg_to_rad(x)

 return math.sin(x_in_rad)

ans = sin_of_deg(23)

print(ans)

The call stack and scope

import math

Convert degrees to radians

def deg_to_rad(x):

 return x * math.pi / 180

Take sin of an angle in degrees

def sin_of_deg(x):

 x_in_rad = deg_to_rad(x)

 return math.sin(x_in_rad)

ans = sin_of_deg(23)

print(ans)

The call stack and scope

import math

Convert degrees to radians

def deg_to_rad(x):

 return x * math.pi / 180

Take sin of an angle in degrees

def sin_of_deg(x):

 x_in_rad = deg_to_rad(x)

 return math.sin(x_in_rad)

ans = sin_of_deg(23)

print(ans)

The call stack and scope

import math

Convert degrees to radians

def deg_to_rad(x):

 return x * math.pi / 180

Take sin of an angle in degrees

def sin_of_deg(x):

 x_in_rad = deg_to_rad(x)

 return math.sin(x_in_rad)

ans = sin_of_deg(23)

print(ans)

The call stack and scope

import math

Convert degrees to radians

def deg_to_rad(x):

 return x * math.pi / 180

Take sin of an angle in degrees

def sin_of_deg(x):

 x_in_rad = deg_to_rad(x)

 return math.sin(x_in_rad)

ans = sin_of_deg(23)

print(ans)

Functional Abstraction
COMP1730/6730

Think Python Ch 4 (Encapsulation, Generalization, Interface Design) and
Ch 6 (Leap of Faith)

Abstraction & Interfaces

• Imagine if when we write very large programs, that we needed to
understand every line of code that our code is built on?
• It would be terrible! Nothing complicated could get done easily. Slow!
• In the first lecture, you saw how to open a file and train a basic ML

model
• General understanding is necessary (yes!), but detailed understanding

of the implementation is not

• We rely on abstraction of details
• We implement code and software libraries that only require an

understanding of the interface
• When we write functions, we should make them intuitive to

provide this interface

Interfaces (Think Python, Ch. 4)
• Providing a simple interface to a complex task is the great value of

software libraries. Other people write code that you don’t know in
detail – but you can do the same tasks, with much less effort.
• Before long, you will be writing code where you didn’t look at every

line of the functions and libraries that you rely on.
• Ch 6 of Think Python calls this the ‘Leap of faith’:

• This is abstraction. Much of the detail in your software remains
abstract. You are now thinking about code at a higher level.

More complicated: Python as a toolbox

Turtle graphics

Luke Taylor, from https://www.youtube.com/watch?v=IyqTY4q16iw

https://docs.python.org/3/library/turtle.html

Abstraction – a drawing example

• Let’s draw a shape - a square.

• Boring, processive, repetitive code. Code_L4_1.py

Drawing shapes – a square

• By writing a draw_square function, we can encapsulate the
complexity individual drawing commands.
• And we can add parameters

Code_L4_2.py

Drawing a bigger structure with functions
• Write another function to draw

multiple squares to make a grid
• Parameters to give size and number

of cells:

Code_L4_3.py

Abstract functions allow easy extensibility
• What if we now need to draw each

cell as a circle – there is a function for
turtle.circle():

Code_L4_4.py

Example: The Robot

• It can:
• Move
• Grip boxes

• Lift mechanical arms up and down
• Sense position
• Be driven by a python code library

Things the robot does:
• Move left/right along a shelf with boxes on it:

• Move gripper up and down:

Open and close the gripper:

Folded Open Closed

• When moving along the shelf of boxes, the gripper needs to be folded
to avoid hitting the boxes
• Folding and unfolding the gripper may hit boxes, so important to lift

the gripper up first

A look at a Robot
class:
• This is the RPCRobot class

that can be found in
robot.py from the labs
• Class RPCRobot
• Global attribute defaults
• __init__ method
• Methods:

• lift_up
• lift_down
• drive_right
• Etc…

The Robot Simulator

The robot library

The robot library

How to pick up a box?

How to build a tower of boxes?

• This quickly gets very tedious!

Abstraction with functions
• We only need to know what a function does. We don’t need to know

how it does it:

• And the idea is, there is a high-level function to do all the necessary
tasks:

How to build a tower of boxes?

• Much better!
• And you needn’t stop there:
build_tower() ?

Exercises

• Exercises in this week’s practical lab

Reading

Think Python Ch 4 (Encapsulation, Generalization, Interface Design) and
Ch 6 (Leap of Faith)

